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Cheng-Han Yang
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National Taiwan University,

Taipei, Taiwan 10617

Experiment and Theory on the
Nonlinear Vibration of a Shallow
Arch Under Harmonic Excitation
at the End
In this paper we study, both theoretically and experimentally, the nonlinear vibration of
a shallow arch with one end attached to an electro-mechanical shaker. In the experiment
we generate harmonic magnetic force on the central core of the shaker by controlling the
electric current flowing into the shaker. The end motion of the arch is in general not
harmonic, especially when the amplitude of lateral vibration is large. In the case when
the excitation frequency is close to the nth natural frequency of the arch, we found that
geometrical imperfection is the key for the nth mode to be excited. Analytical formula
relating the amplitude of the steady state response and the geometrical imperfection can
be derived via a multiple scale analysis. In the case when the excitation frequency is close
to two times of the nth natural frequency two stable steady state responses can exist
simultaneously. As a consequence jump phenomenon is observed when the excitation
frequency sweeps upward. The effect of geometrical imperfection on the steady state
response is minimal in this case. The multiple scale analysis not only predicts the ampli-
tudes and phases of both the stable and unstable solutions, but also predicts analytically
the frequency at which jump phenomenon occurs. �DOI: 10.1115/1.2165231�

1 Introduction
Historically, the interest in shallow arch research is primarily on

the snap-through buckling when the arch is under some kind of
lateral loading. The first theoretical prediction on the static critical
load was conducted by Timoshenko in 1935 �1�, in which a pinned
sinusoidal arch was subjected to a uniformly distributed load. Ti-
moshenko’s pioneering work was followed and extended by many
other researchers on various kinds of topics, including the snap-
through phenomenon under dynamic load. The first theoretical
prediction of dynamic buckling load was conducted by Hoff and
Bruce in 1954 �2�, in which they studied the stability of a sinu-
soidal arch under unit step loading and ideal impulsive loading. A
good introduction and more references on the static and dynamic
snap-through buckling can be found in the two books by Simitses
�3,4�. A more up-to-date reference list on these subjects can be
found in a recently published paper by Chen and Liao �5�.

Besides the quasi-static, impulsive, and step loadings discussed
above, the dynamic response of a shallow arch under periodic
excitation has also been studied by some researchers. Previous
research in this regard may be roughly divided into two groups.
The first group considers the case when the vibration amplitude is
so large that dynamic snap-through occurs. The critical load am-
plitude and frequency of an arch under harmonic excitation is
harder to predict compared to the problem of step or impulsive
loading. Huang �6� used a cycle-averaging approach to predict the
critical load when the excitation frequency is high. Plaut and
Hsieh �7� used a one-term approximation to numerically study the
critical load when the arch is subject to a two-frequency excita-
tion. Blair et al. �8� simplified the arch with a two-rigid-link
model and used harmonic balance method to study its dynamic
response when it is under harmonic excitation.

The second group focuses on smaller excitation and vibration
amplitude with emphasis on the nonlinear response such as super-

harmonic, subharmonic, and internal resonances. Thompson �9�
studied the chaotic vibration of a circular high arch loaded by a
harmonic force at its crown, a problem initiated by Boloton in his
book �10�. Tien and Sri Namachchivaya �11,12� and Bi and Dai
�13� used a two-term approximation to study the internal reso-
nance of a shallow arch under lateral loading with both averaging
method and direct integration method. With the same two-term
approximation, Malhotra and Sri Namachchivaya �14,15� also in-
vestigated the possibility of chaotic response when the shallow
arch is under 1:1 and 1:2 resonances.

From the above literature review we notice that while some
theoretical investigations on the dynamic response of a periodi-
cally excited shallow arch exist, experimental investigation is
relatively rare. Generally speaking, theoretical investigations tend
to oversimplify the reality. For instance, it is not an easy matter to
realize a pulsating load with constant amplitude in the laboratory
because the structure will change the characteristics of the loading
mechanism, especially when the vibration amplitude becomes
large. For the internal resonance phenomenon discussed in Refs.
�11–15�, it can occur only when special relations among the natu-
ral frequencies of the arch happen to exist. In the real world, this
situation occurs only accidentally.

One of the values of experimental work is that it can sometimes
inspire new research ideas and help us establish more realistic
model for analysis. In this paper we set out to design an experi-
mental setup aiming to observe the nonlinear vibration of a shal-
low arch with an electro-mechanical shaker attached to one end.
Special attention is focused on the case when the excitation fre-
quency is close to the nth natural frequency �coupling resonance�
and two times of the nth natural frequency �parametric resonance�.
Although the vibration phenomenon is nonlinear in nature the
vibration amplitude of the arch is limited to be small enough so
that no snap-through buckling will occur. The experimental obser-
vation is then compared to the numerical simulation based on the
theoretical model. In order to capture the physical essence of the
nonlinear vibration observed in the experiment and numerical
simulation, we also develop an analytical technique based on the
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multiple scale method to formulate the closed-form solution of the
steady state response of the arch. The theoretical and experimental
results agree reasonably well.

2 Experimental Setup
Figure 1 is a schematic diagram of the experimental setup. The

arch is made of copper strip with Young’s modulus 101 GPa and
mass density 8840 kg/m3. The length L of the arch is 44 cm and
the cross section is 25 mm�1.2 mm. Both ends of the curved
beam are attached to roller bearings to simulate pinned condition.
One end of the arch is attached to an electro-magnetic shaker via
a stinger. The magnetic force on the central core of the shaker is
controlled by the current flowing into the shaker. A power ampli-
fier connected to the shaker is responsible for pumping electric
current proportional to the harmonic voltage signal from a func-
tion generator. The current can be monitored by measuring the
voltage across a high-power low-ohm resistor. With this arrange-
ment, the magnetic force on the central core of the shaker can be
estimated accurately. Linear bearing is installed to reduce the fric-
tion when the end attachment slides on the guiding rods. The total
mass of the bearing installation at the end is measured as me
=0.8 kg. The axial motion of the sliding end is monitored by a
photonic probe �MTI 2000�. The lateral speeds at various loca-
tions of the arch are measured by a two-channel LDV system. The
speed signals from the LDV system can be integrated to obtain the
displacement history.

Although the arch is designed to match a half-sinusoidal curve
as closely as possible, some minor deviation can still be detected.
This deviation is the geometrical imperfection. It will be shown
that these minor imperfections are of paramount importance when
the excitation frequency of the shaker is close to one of the natural
frequencies of the arch. We assume that the initial shape of the
arch y0, measured from the base line passing through the two
ends, can be expanded in a Fourier series

y0 = �
n=1

�

hn sin
n�x

L
�1�

To determine the coefficients of various Fourier components in
Eq. �1�, we measure the deviation of the arch to the designed
half-sinusoidal curve at 40 equidistant locations. By employing a
least-squares method we can estimate the first eight harmonic
components h1–h8, as listed in Table 1. The second row of Table
1 lists the physical height hn. The third row lists the dimensionless
height hn

*, whose definition can be found in Eq. �5� later. It is
noted that the initial shape of the specimen is indeed very close to
the half-sinusoidal shape with h1 being the dominant coefficient.
Most of the coefficients corresponding to the imperfection �hn
with n�2� are on the order of less than 1% of h1, except h3 which
amounts to 6.4% of h1.

As a first approximation, the central core and suspension of the
shaker is modeled as a one degree-of-freedom mass-spring oscil-
lator. The natural frequency of this central core-suspension system
is measured at 114.88 Hz. The spring constant of the suspension
is estimated as k=22253 N/m by measuring the displacements
�with power off� of the central core when different forces
�weights� are applied. The effective mass of the oscillator is then
calculated as ms=0.043 kg. We are not interested in the damping
of the shaker at this stage because we are more interested in the
damping of the whole system when the shaker is attached to the
movable end of the arch. When the central core is connected to the
movable end of the arch in series, the total mass m=0.843 kg will
be the combination of me and ms. The theoretical model of our
experimental setup is shown in Fig. 2. It is noted that while we
can control the force on the end mass m by controlling the electric
current flowing into the shaker, we cannot control the motion e of
the end mass. Therefore, the experimental setup is under load
control.

3 Equations of Motion
Consider the theoretical model shown in Fig. 2. The two pinned

ends of the elastic shallow arch are originally separated by a dis-
tance L. The arch is free of lateral loading. At one end, the arch is
connected to a sliding mass m, which is restrained by a spring k.
The mass is subjected to a harmonic excitation force 2f cos �t,
where 2f and � are the amplitude and the frequency of the force.
The initial and deformed shapes of the arch are y0 and y, both
measured from the same baseline. The equation of motion of the
arch can be written as

�Ay,tt = − EI�y − y0�,xxxx + py,xx �2�

The parameters E, �, A, and I are Young’s modulus, mass density,
area, and area moment of inertia of the cross section of the arch. p
is the axial force in the deformed arch. The force balance of the
attached end mass gives an additional equation

më = − p − ke + 2f cos �t �3�

The relation between the end motion e and the shape change of
the arch can be established from the elastic extensibility of the
arch

p =
EA

L �e +
1

2�
0

L

��y,x�2 − �y0.x�2�dx� �4�

After replacing the axial force p in Eqs. �2� and �3� with Eq. �4�,
we can obtain the two equations of motion governing the de-
formed shape y and end motion e of the arch. It is noted that

Fig. 1 Schematic diagram of the experimental setup

Table 1 Coefficients of Fourier expansion of the initial shape.
The second row lists the physical height hn. The third row lists
the dimensionless height hn

* .

n 1 2 3 4 5 6 7 8

hn �mm� 16.10 −0.19 −1.03 0.14 0.06 −0.01 −0.005 0.003

hn
* 46.5 −0.55 −2.98 0.41 0.18 −0.04 −0.014 0.01

Fig. 2 Theoretical model of the arch-shaker assembly
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Mettle formulated similar equations for a straight beam with end
mass and under prescribed oscillating axial load in 1962 �16�.

Equations �2�–�4� can be nondimensionalized by introducing
the following dimensionless parameters �with asterisks�

�y*,y0
*,h*� =

1

r
�y,y0,h� x* =

�x

L
t* =

�2t

L2 	EI

A�

��*,�*� =
L2

�2	A�

EI
��,�� �p*, f*� =

L2

�2EI
�p, f� e* =

Le

�2r2

m* =
I�4m

L3A2�
k* =

Lk

EA
�* =

�L2

�2�Ar
	�

E
�5�

The parameters � and � are the damping and natural frequency of
the arch-shaker system, which will be discussed later. r is the
radius of gyration of the cross section of the arch. After substitut-
ing the above relations into Eqs. �2�–�4�, and dropping all the
superposed asterisks thereafter for simplicity, we obtain the two
dimensionless equations of motion

y,tt = − �y − y0�,xxxx + 
e +
1

2�
�

0

�

��y,x�2 − �y0,x�2��y,xx �6�

më = −
1

2�
�

0

�

��y,x�2 − �y0,x�2�dx − �1 + k�e + 2f cos �t �7�

The boundary conditions for y at x=0 and � are

y�0� − y0�0� = y,xx�0� − y0,xx�0� = y��� − y0��� = y,xx��� − y0,xx���

= 0 �8�

The dimensionless version of Eq. �1�, the initial shape, can be
written as

y0 = �
n=1

�

hn sin nx �9�

It is assumed that the shape of the loaded arch can be expanded as

y�t� = y0 + �
n=1

�

	n�t�sin nx �10�

After substituting Eqs. �9� and �10� into Eqs. �6� and �7�, multi-
plying Eq. �6� by sin nx and integrating from x=0 to � �Galerkin’s
procedure�, we obtain the equations governing 	n and e

	̈n = − n4	n − n2�hn + 	n��e +
1

4�
j=1

�

j2�	 j
2 + 2hj	 j�

n = 1,2,3, . . . �11�

më = − e�1 + k� + 2f cos �t −
1

4�
j=1

�

j2�	 j
2 + 2hj	 j� �12�

4 Natural Frequencies of the Assembly
The linearized version of Eqs. �11� and �12�, without excitation,

are

	̈n = − n4	n − n2
hne +
1

2�
j=1

�

j2hnhj	 j� n = 1,2,3, . . . �13�

më = − e�1 + k� −
1

2�
j=1

�

j2hj	 j �14�

From these two equations we can calculate the first eight natural
frequencies �1–�8 of the assembly, both dimensionless ��i

*, sec-
ond row� and dimensional ��i, third row�, as listed in Table 2. It is
noted that the dimensionless natural frequency �i

* for i�2 is very
close to i2, the ith natural frequency of the perfectly sinusoidal
arch. The small deviation of the calculated natural frequencies
from i2 is caused by the geometrical imperfections.

One way to check whether the theoretical model for connection
between the shaker and the arch is correct is to compare the above
calculated natural frequencies of the arch-shaker assembly with
those observed experimentally. Figure 3 shows the measured
power spectrum of the arch itself without shaker �upper graph�
and the arch-shaker assembly �lower graph�. It is noted that the
effect of the shaker attachment is to raise the first natural fre-
quency from 10 to 17 Hz. The measured natural frequencies of
the arch-shaker assembly are also recorded on the fourth row of
Table 2. From the comparison of the third row and the fourth row
of Table 2, we are confident that the mechanical model described
in Fig. 2 and the estimated physical parameters for the shaker are
not far from the truth.

5 Estimate of Damping
To simulate the motion of the assembly numerically, we still

have to estimate the damping of the arch-shaker assembly. The
dissipating mechanism of the system comes from the friction in
the moving parts and the material damping in the arch. In order to
accommodate the damping effect in the numerical simulation, we
modify Eq. �11� by adding a damping parameter 2�

	̈n = − 2�	̇n − n4	n − n2�hn + 	n�
e +
1

4�
j=1

�

j2�	 j
2 + 2hj	 j��

n = 1,2,3, . . .

In order to estimate the damping parameter of the arch-shaker
assembly, we displace by hand the movable end of the arch a
distance e=−108 �−0.29 mm� with the shaker attached, and then
release it. The measured displacement history y−y0 at the middle
point of the arch is recorded as solid line in Fig. 4. For convenient
reference, we present the measured results with both dimension-
less parameters �left and bottom sides� and the physical ones
�right and top sides�. The same labeling style is adopted in all the
figures involving experimental measurement. Since the oscillation
frequency �17 Hz� corresponds to the first natural frequency of the
arch-shaker assembly, we may assume that the first mode is domi-
nant in the dynamic response in Fig. 4. The damping factor may
be estimated from the decaying rate of the two peaks as signified
by black dots. The heights of the two peaks are measured at y1
=2.77 �0.96 mm� and y2=1.90 �0.66 mm�. The ratio of the damp-
ing of the system � to a critical damping �c is �17�

Table 2 The first eight natural frequencies of the assembly.
The second row „dimensionless… and the third row „dimen-
sional… are calculated from Eqs. „13… and „14…. The fourth row is
measured from experiment.

i 1 2 3 4 5 6 7 8

�i
* 1.744 3.999 8.578 15.95 24.96 35.99 48.99 64.02

�i �Hz� 16.56 37.99 81.49 151.56 237.13 341.94 465.46 608.20
�i �Hz� 17 38 78 138 214 319 461 616
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�

�c
=

ln�y1/y2�
��2��2 + �ln�y1/y2��2�1/2 �16�

The damping ratio in Eq. �16� is calculated as 0.06. The critical
damping �c is estimated numerically by adjusting the damping
parameter � in Eq. �15� �using only one-mode approximation�
until the response 	1 ceases to oscillate following an impulsive
excitation. In this way the dimensionless critical damping �c is
estimated as 3.0. As a consequence the damping of the assembly
is calculated as �=0.18. The numerical result obtained by inte-
grating Eqs. �12� and �15� based on this estimated damping is
plotted in Fig. 4 as dashed line. Although this estimate may appear
somewhat engineering-oriented, it is believed that the damping
factor in our experimental setup is about this order.

6 Coupling Resonance
In the case when the arch is subjected to a lateral force with the

excitation frequency close to a natural frequency of the arch, pri-
mary resonance will occur. Although in this section we also adjust
the excitation frequency close to one of the natural frequencies �n
�n�2� of the arch-shaker assembly, the arch is excited in the axial
direction. In this situation, the nth mode of the assembly will not

be excited directly by the excitation force. Instead, the nth mode
will be excited indirectly by the axial mode after the axial mode is
excited directly by the excitation force. It will be shown that the
geometrical imperfection serves as the coupling factor between
the lateral vibration and the axial excitation. Therefore, we choose
to use the term “coupling resonance” here instead of “primary
resonance.” More physical insight regarding this matter can be
found in the next section. In Fig. 5 we record the measured steady
state amplitudes of the arch at 17 evenly spaced locations with
closed dots “•” when the excitation frequency � is close to the
four natural frequencies ��2–�5� of the arch, i.e., �a� 38 Hz, �b�
78 Hz, �c� 138 Hz, and �d� 216 Hz. The amplitude of excitation
forces 2f in these four experiments are �a� 2.00 N, �b� 4.04 N, �c�
8.56 N, and �d� 10.68 N. The solid lines represent the numerical
predictions from the complete theoretical model �	1–	8� includ-
ing the small imperfections. The dashed lines are the simplified
model neglecting all the imperfections hn with n
1.

Several comments can be made regarding Fig. 5. �1� By com-
paring the closed dots and the solid lines, we observe that the
measured amplitudes agree fairly well with the complete-model
prediction in all four cases. The worst agreement is observed in
Fig. 5�d�. �2� The amplitude profile is symmetric with respect to
the midpoint when � is close to the natural frequency of a sym-
metric mode, such as �3 and �5. On the other hand, the amplitude
profile is asymmetric when � is close to the natural frequency of
an asymmetric mode, such as �2 and �4. �3� In all four cases the
steady state vibrations contain two dominant components, i.e., 	1
and 	n. �4� If the small imperfections hn with n
1 are neglected
in the numerical simulation, all the corresponding components 	n
will be suppressed to zero. This simplified model gives erroneous
prediction as can be seen from the comparison of solid and dashed
lines. The above observations indicate that in the case when the
excitation frequency is close to the nth natural frequency, the cor-
responding small geometrical imperfection hn should not be
ignored.

7 Multiple Scale Analysis for Coupling Resonance
To predict analytically the amplitude of vibration when the ex-

citation frequency is close to �n, we retain only the coordinates 	1

Fig. 3 Power spectrums of the arch itself „upper graph… and the arch-shaker assem-
bly „lower graph…

Fig. 4 Solid line is the measured lateral displacement history
at the middle point of the arch after an initial displacement at
the end of the arch-shaker assembly. Dashed line is the calcu-
lated response based on the estimated damping.
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and 	n and neglect all other components in Eqs. �12� and �15�.
The three nontrivial equations of motion can be rewritten in the
following form

	̈1 + 
1 +
h1

2

2
�	1 = − 2�	̇1 −

1

2
n2h1hn	n − h1e −

3

4
h1	1

2 −
1

4
n2h1	n

2

−
1

2
n2hn	1	n − 	1e −

1

4
	1

3 −
1

4
n2	1	n

2 �17�

	̈n + n4
1 +
hn

2

2
�	n = − 2�	̇n −

1

2
n2h1hn	1 − n2hne −

1

4
n2hn	1

2

−
3

4
n4hn	n

2 −
1

2
n2h1	1	n − n2	ne −

1

4
n2	1

2	n

−
1

4
n4	n

3 �18�

më + �1 + k�e = − 1
2h1	1 − 1

2n2hn	n − 1
4	1

2 − 1
4n2	n

2 + 2f cos �t

�19�
The numerical simulation based on Eqs. �17�–�19� is confirmed to
agree well with the complete equations �12� and �15� when exci-
tation frequency � is close to �n. In the following we will use
multiple scale method to study analytically the steady state ampli-
tude and phase of 	n based on the simplified three-mode equa-
tions.

We first rescale Eqs. �17�–�19� by defining

�hn�n�2�,�, f ,	1,	n�n�2�,e� = ��ĥn�n�2�,�̂, f̂ ,	̂1,	̂n�n�2�, ê�

�20�

� is an artificial scale used to define the order of magnitude of
various parameters. Equation �20� assumes that the three variables
	1, 	n, and e are of the same order of magnitude. After substitut-
ing relation �20� into Eqs. �17�–�19�, the equations can be rewrit-
ten in the following form

	̈̂1 + 
1 +
h1

2

2
�	̂1 + h1ê

= − �
2�̂	̇̂1 +
1

2
n2h1ĥn	̂n +

3

4
h1	̂1

2 +
1

4
n2h1	̂n

2 + 	̂1ê�
− �2
1

2
n2ĥn	̂1	̂n +

1

4
	̂1

3 +
1

4
n2	̂1	̂n

2� �21�

	̈̂n + n4	̂n = − ��2�̂	̇̂n + 1
2n2h1ĥn	̂1 + n2ĥnê + 1

2n2h1	̂1	̂n + n2	̂nê�
− �2� 1

2n4ĥn
2	̂n + 1

4n2ĥn	̂1
2 + 3

4n4ĥn	̂n
2 + 1

4n2	̂1
2	̂n

+ 1
4n4	̂n

3� �22�

më̂ + �1 + k�ê + 1
2h1	̂1 = − �� 1

2n2ĥn	̂n + 1
4 	̂1

2 + 1
4n2	̂n

2� + 2 f̂ cos �t

�23�

We now assume the following expansions for 	̂1, 	̂n, and ê,

	̂1 = 	10�T0,T1� + �	11�T0,T1� �24�

	̂n = 	n0�T0,T1� + �	n1�T0,T1� �25�

ê = e0�T0,T1� + �e1�T0,T1� �26�

where Tn=�nt. Substituting Eqs. �24�–�26� into Eqs. �21�–�23� and
equating coefficients of like powers of � yields �0

D0
2	10 + 
1 +

h1
2

2
�	10 + h1e0 = 0 �27�

mD0
2e0 + �1 + k�e0 + 1

2h1	10 = f̂ei�T0 + f̂e−i�T0 �28�

D0
2	n0 + n4	n0 = 0 �29�

�1

Fig. 5 Steady state amplitude profiles when the assembly is excited at „a… �1
=38 Hz, „b… �2=78 Hz, „c… �3=138 Hz, and „d… �4=216 Hz. Closed dots represent ex-
perimental measurements. Solid and dashed lines are the theoretical predictions in-
cluding and excluding geometrical imperfections, respectively.
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D0
2	11 + 
1 +

h1
2

2
�	11 + h1e1

= − 2D0D1	10 − 2�̂D0	10

−
1

2
n2h1ĥn	n0 −

3

4
h1	10

2 −
1

4
n2h1	n0

2 − 	10e0 �30�

mD0
2e1 + �1 + k�e1 + 1

2h1	11 = − 2mD0D1e0 − 1
2n2ĥn	n0 − 1

4	10
2

− 1
4n2	n0

2 �31�

D0
2	n1 + n4	n1 = − 2D0D1	n0 − 2�̂D0	n0 − 1

2n2h1ĥn	10

− 1
2n2h1	10	n0 − n2ĥne0 − n2	n0e0 �32�

where Dn�� /�Tn. It is noted that Eqs. �27� and �28� are coupled
equations of 	10 and e0, while Eq. �29� is an independent homo-
geneous equation of 	n0. The general solutions of Eqs. �27�–�29�
can be written as

	10 = A1�T1�ei�1T0 + B1�T1�ei�2T0 + 1ei�T0 + cc �33�

e0 = A1�T1�u1ei�1T0 + B1�T1�u2ei�2T0 + 2ei�T0 + cc �34�

	n0 = An�T1�ein2T0 + cc �35�
where cc stands for the complex conjugates of the preceding
terms. The parameters �1 and �2 are the two eigenvalues of Eqs.
�27� and �28� �excluding the forcing term�, with �1,u1� and �1,u2�
being the corresponding eigenvectors. These parameters are cal-
culated as

�1 = ± 
�1 − 	�2 + �1
2

4m
�1/2

, �2 = ± 
�1 + 	�2 + �1
2

4m
�1/2

�36�

u1 =
�3 − 	�2 + �1

2

4h1m
, u2 =

�3 + 	�2 + �1
2

4h1m
�37�

The constants �1, �2, and �3 are defined as

�1 = 2 + 2k + 2m + h1
2m, �2 = − 8m�2 + 2k + h1

2k� ,

�3 = 2 + 2k − 2m − h1
2m

The amplitudes 1 and 2 of the particular solutions are

1 =
− h1

����
f̂ , 2 =

2 + h1
2 − 2�2

2����
f̂ �38�

where

���� = 
1 +
h1

2

2
− �2��1 + k − m�2� −

h1
2

2
�39�

After substituting Eqs. �33�–�35� into Eqs. �30� and �31�, fol-
lowing a solvability analysis we can conclude that A1→0 and
B1→0 as T1→� �18�. Therefore, the terms containing A1 and B1
in Eqs. �33� and �34� can be dropped. We now substitute Eqs.
�33�–�35� into Eq. �32� and conclude that the secular term of Eq.
�32� can be eliminated if

2iD1Anein2T0 + 2i�̂Anein2T0 + 1
2h1ĥn1ei�T0 + ĥn2ei�T0 = 0

�40�

We assume that the excitation frequency � is close to �n=n2, and
can be expressed as

� = n2 + �� = n2 + �� �41�

where �� is a small deviation from �n=n2, and is assumed to be
of the order �. � is a detuning parameter. After using the above
relation, Eq. �40� can be rearranged into the form

2iD1An + 2i�̂An + � 1
2h1ĥn1 + ĥn2�ei�T1 = 0 �42�

To solve An from Eq. �42�, we express the complex variable An as

An = 1
2anei�n �43�

where an and �n are real variables. Substituting Eq. �43� into Eq.
�42� and equating the real part and imaginary part of Eq. �42� to
zero, we obtain

an� + �̂an = − � 1
2h1ĥn1 + ĥn2�sin �n �44�

�n�an = � 1
2h1ĥn1 + ĥn2�cos �n �45�

where �n=�T1−�n. The superposed prime denotes the differentia-
tion with respect to T1. By assuming the existence of the steady
state solution, we can let an�=0 and �n�=0. As a consequence, the
amplitude and phase of the steady state solution An can be solved
from the following two algebraic equations

�̂an = � 1
2h1ĥn1 + ĥn2�sin �n �46�

�an = � 1
2h1ĥn1 + ĥn2�cos �n �47�

From Eqs. �46� and �47� we obtain the amplitude an and phase �n
as

an =
ĥn�1 − �2�

����	�̂2 + �2
f̂ �48�

�n = tan−1
− �̂

�
� �49�

The final expressions of the steady state response can then be
expressed in the following forms

	1 =
− 2h1

����
f cos �t �50�

	n =
hn�1 − �2�

����	�2 + ����2
f cos��t − �n� �51�

e =
2 + h1

2 − 2�2

����
f cos �t �52�

Therefore, to the order of our analysis, the amplitude of the mode
	n is proportional to the imperfection hn. For a perfect sinusoidal
arch with hn=0, the mode 	n will never be excited even though
the excitation frequency � is equal to the natural frequency
�n=n2.

The closed-form solutions for the amplitude and phase of 	n
predicted by multiple scale analysis can be verified by numeri-
cally integrating the complete equations of motion Eqs. �12� and
�15�. The solid lines in Fig. 6 show the variation of �a� amplitude
and �b� phase of 	4 as functions of frequency deviation parameter
�� predicted from the multiple scale analysis. The closed dots
represent the amplitude and phase predicted from numerically in-
tegrating Eqs. �12� and �15�. All the parameters �h1, h4, and f�
used in the calculation correspond to the experiment described in
Fig. 5�c�. The analytical predictions via multiple scale analysis
agree with the numerical integration quite well.

The above analysis also reveals the nature of the coupling reso-
nance. In the last section we suggest that the resulted vibration
should not be called “primary resonance” even though the excita-
tion frequency of the axial force is close to the nth natural fre-
quency of the arch. Our analysis in this section shows that the
axial force excites the modes 	1 and e in a “nonresonant” manner
�see Eqs. �33� and �34��. These two modes then excite the
	n-mode internally. However, it does not seem right to call it
internal resonance because internal resonance is usually referred
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to the situation when the natural frequencies involved possess
certain relations �11–13�. The key for the resonance discussed in
this section to occur is the geometrical imperfection hn, which
couples the lateral vibration with the axial excitation. Therefore,
we choose the term “coupling resonance.” The indirectly excited
mode 	n is found to be of the same order of magnitude of the
directly excited modes 	1 and e.

8 Parametric Resonance
In this section we direct our attention to the case when the

excitation frequency is close to 2�2 �76 Hz�. The amplitude of the
excitation force 2f in this experiment is fixed at 40.06 N. We
record the steady state time history at two locations symmetric
with respect to and 11 cm �a quarter of the total length� away
from the midpoint simultaneously and subtract one from the other.
By this procedure all the signals from the symmetric modes �	1
and 	3 particularly� will be canceled out. Therefore, the resulted
signal contains mainly the 	2-mode, whose amplitude is recorded
in Fig. 7. We first sweep the excitation frequency from a little
higher than 76 Hz to a little lower than 76 Hz. The amplitude of
the resulted signal is denoted by the symbol “�.” It is observed
that in this “sweeping-down” process, the amplitude of 	2
changes from very small to a noticeable amount when the excita-
tion frequency is at 78 Hz, slightly above 2�2. It is noted that
78 Hz happens to be the natural frequency �3 of the arch. There-
fore, the overall vibration amplitude is large, as have been dem-
onstrated in Fig. 5�b�. However, the net signal after subtraction is
still relatively small. The amplitude of 	2 continues to increase
when the excitation frequency decreases. In another experiment
we sweep the excitation frequency from 73 Hz upward. The mea-
sured amplitude is recorded by the symbol “•.” In the lower end of
this “sweeping-up” process the measured amplitude is very small
�about 0.1 mm� until the excitation frequency reaches 74.2 Hz, at
which the measured amplitude experiences an obvious jump to
2.77 mm. After the jump, the measured amplitude decreases

gradually as the excitation frequency continues to sweep up, fol-
lowing more or less the locus recorded during the previous
“sweeping-down” experiment. Obviously at frequency below
74.2 Hz, there exist two steady state solutions simultaneously.

To investigate these two steady state responses further, we mea-
sured the overall amplitude profiles at frequency 73.4 Hz, the
points A and B in Fig. 7. We can easily switch the arch vibration
between states A and B by disturbing the arch with hands. Figure
8 shows the amplitude profiles of these two steady states. Symbols
“�” are for state A, while symbols “•” are for state B. In Fig. 9 we
record the time history of these two responses at location x
=11 cm. We found that in state A the dominant frequency is
36.7 Hz, while in response B the dominant frequency appears to

Fig. 6 „a… Amplitude and „b… phase of �4 as functions of the
frequency deviation ��. The solid lines are from multiple scale
analysis. The closed dots are from numerically integrating the
complete equations of motion.

Fig. 7 Steady state amplitude of component �2. “•” represents
the measurement during the sweeping-down process. “�” rep-
resents the measurement during the sweeping-up process.
Solid „stable… and dashed „unstable… lines are multiple scale
predictions.

Fig. 8 Amplitude profiles corresponding to the two steady
states A and B in Fig. 7

Fig. 9 Time history of the two states A and B in Fig. 7 mea-
sured at location 11 cm from the midpoint
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be two times of the state A. By inspecting Figs. 8 and 9 we can
determine that the dominant component in the amplitude profile
corresponding to state A is apparently sin 2x. We can also identify
the minor components in the response A as sin x and sin 3x. To
determine that the response contains the components sin x and
sin 3x, we record the time history at two points symmetrical with
respect to the midpoint simultaneously and add them up �instead
of subtracting one from another as described in Fig. 7�. This add-
ing process will eliminate the dominant component sin 2x. By
repeating this process for eight pairs of locations we obtain an
amplitude profile that contains mostly the sin x and sin 3x modes.
For the amplitude profile corresponding to state B the dominant
component is sin 3x. The reason why the mode sin 3x is present in
both responses A and B is because the excitation frequency 2�2
happens to be close to �3.

It is noted that the vibration amplitude of steady state A is
almost ten times larger than that of state B, as seen from Fig. 9.
We also record the time history of the end motion for these two
states in Fig. 10. It is noted that for state A with large lateral
vibration the end motion is no longer harmonic. On the other
hand, the end motion of state B is still quite close to harmonic.

9 Multiple Scale Analysis for Parametric Resonance
As discussed in Sec. 8, the reason why the mode sin 3x is

present in the measured response is because the excitation fre-
quency 2�2 happens to be close to �3. If we exclude this compli-
cating factor, we may conclude that 	1 and 	2 will be two domi-
nant components when the excitation frequency � is close to 2�2.
Further numerical calculation shows that in this case the geometri-
cal imperfection has only minimal effect on the final steady state
response. To analytically predict the steady state solutions and
gain more physical insight into the jump phenomenon observed in
the experiment, we employ again the multiple scale analysis on
this case.

As in Sec. 7 we start with the three-mode equations �17�–�19�,
except that the imperfection hn is set to be zero for simplicity. The
numerical simulation based on the three-mode equations with hn
=0 is found to agree quite well with the complete Eqs. �12� and
�15� when excitation frequency � is close to 2�n. In this case we
rescale the parameters in a somewhat different manner

	n = �	̂n �53�

��, f ,	1,e� = �2��̂, f̂ ,	̂1, ê� �54�

In other words, we assume that 	n is one order of magnitude
larger than those parameters listed in Eq. �54�. This assumption is
based mainly on the experimental observation. After substituting
Eqs. �53� and �54� into Eqs. �17�–�19� the equations can be rewrit-
ten in the following form

	̈̂1 + 
1 +
h1

2

2
�	̂1 + h1ê = −

1

4
n2h1	̂n

2 − �2
2�̂	̇̂1 + 	̂1ê +
3

4
h1	̂1

2�
�55�

	̈̂n + n4	̂n = − �2�2�̂	̇̂n + 1
2n2h1	̂1	̂n + n2	̂nê + 1

4n4	̂n
3� �56�

më̂ + �1 + k�ê + 1
2h1	̂1 = 2 f̂ cos �t − 1

4n2	̂n
2 − �2� 1

4 	̂1
2� �57�

We now assume the following expansions for 	̂1, 	̂n, and ê

	̂1 = 	10�T0,T2� + �2	12�T0,T2� �58�

	̂n = 	n0�T0,T2� + �2	n2�T0,T2� �59�

ê = e0�T0,T2� + �2e2�T0,T2� �60�
Following a similar procedure as described in Sec. 7, and equating
coefficients of like powers of � yields �1

D0
2	n0 + n4	n0 = 0 �61�

�2

D0
2	10 + 
1 +

h1
2

2
�	10 + h1e0 = −

n2

4
h1	n0

2 �62�

mD0
2e0 + �1 + k�e0 +

1

2
h1	10 = f̂ei�T0 + f̂e−i�T0 −

n2

4
	n0

2 �63�

�3

D0
2	n2 + n4	n2 = − 2D0D2	n0 − 2�̂D0	n0 − n2	n0e0 −

n2

2
h1	10	n0

−
n4

4
	n0

3 �64�

The general solution of the homogeneous equation �61� can be
written as

	n0 = An�T2�ein2T0 + cc �65�
After substituting Eq. �65� into Eqs. �62� and �63� we can solve
for 	10 and e0 as

	10 = A1ei�1T0 + B1ei�2T0 + 11e
i�T0 + 12e

2in2T0 + 13 + cc

�66�

e0 = u1A1ei�1T0 + u2B1ei�2T0 + 21e
i�T0 + 22e

2in2T0 + 23 + cc

�67�

The parameters �1, �2, u1, and u2 have been defined in Eqs. �36�
and �37�. ij are defined as

11 = −
h1 f̂

����
, 21 =

�2 + h1
2 − 2�2� f̂

2����

12 = −
n2h1�k − 4mn4�

4��2n2�
An

2, 22 = −
n2�1 − 4n4�

4��2n2�
An

2

13 = −
n2h1k

4��0�
AnĀn, 23 = −

n2

4��0�
AnĀn

where the function ��·� has been defined in Eq. �39�. We assume
that the excitation frequency is close to 2�n, i.e.

� = 2n2 + �� = 2n2 + �2� �68�
Substituting Eqs. �65�–�68� into Eq. �64�, the solvability condition
for 	n2 can be obtained as

An� + C1An + iC2Ānei�T2 + iC3An
2Ān = 0 �69�

where the coefficients Ci are

Fig. 10 Time history of the end motion of the two states A and
B in Fig. 7
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C1 = �̂, C2 =
��2 − 1�
2����

f̂ ,

C3 =
n2

16

h1

2�k − 4mn4� + 2�1 − 4n4�
��2n2�

+
2kh1

2 + 4

��0�
− 6�

The superposed prime in Eq. �69� represents derivative with re-
spect to T2. To solve the homogeneous equation �69� we express
An in the same form as in Eq. �43�. After substituting Eq. �43� into
Eq. �69� we obtain the two equations for the amplitude an and �n

an� + C1an − C2an sin �n = 0 �70�

an�4�n� + 4C2 cos �n + C3an
2� = 0 �71�

where �n=�T2−2�n. The amplitude and phase of the steady state
solutions can then be solved from

an�C1 − C2 sin �n� = 0 �72�

an�2� + 4C2 cos �n + C3an
2� = 0 �73�

Two types of solutions can be found from Eqs. �72� and �73�. The
first is the trivial solution an=0. In this case the mode 	n will not
be excited. The second solution is nontrivial, where

�n = sin−1
C1

C2
� �74�

an = 
− 2� ± 4	C2
2 − C1

2

C3
�1/2

�75�

To determine the stability of the above trivial and nontrivial
steady state solutions, we express An in Eq. �69� as the superpo-

sition of the steady state solution Ans and a small disturbance Ãn

An = Ans + Ãn �76�
After substituting Eq. �76� into Eq. �69� and linearizing the equa-

tion with respect to Ãn, we obtain the linear equation for Ãn

Ãn� + C1Ãn + iC2AD nei�T2 + iC3�2AnsĀnsÃn + Ans
2 AD n� = 0 �77�

Ans in Eq. �77� is the trivial and nontrivial solutions solved previ-

ously. After expressing Ãn in the form Ãn= �anR+ ianI�e�1/2�i�T2, Eq.
�77� can be rewritten as two real equations

anR� + �C1 + 1
4C3an

2 sin �n�anR + �C2 − 1
2� − 1

4C3an
2�2 − cos �n��anI

= 0 �78�


C2 +
1

2
� +

1

4
C3an

2�2 + cos �n��anR + anI�

+ 
C1 −
1

4
C3an

2 sin �n�anI = 0 �79�

an and phase �n in Eqs. �78� and �79� are the amplitude and phase
expressed in Eqs. �74� and �75�. By solving the eigenvalues of
Eqs. �78� and �79� we can determine the stability of the steady
state solutions. The final expressions of the steady state response
of 	n are expressed in the following form

	n = �− 2�� ± 4	
��2 − 1�
2����

f�2

− �2

C3
�

1/2

cos
� − �n

2
t�

�80�
After substituting the physical parameters corresponding to the

experiment shown in Fig. 7, we can plot the calculated amplitude
of the steady state solution 	2 as solid �stable� and dashed �un-
stable� lines. Two bifurcation points can be observed in Fig. 7.
Point C is a subcritical pitch-fork bifurcation point, while D is a

supercritical pitch-fork bifurcation point. The two bifurcation fre-
quencies are 2n2+ ����+ and 2n2+ ����−, �recall that n=2 in this
case� where frequency deviations ����+ and ����− can be calcu-
lated as

����± = ± 2	���2 − 1�
2����

f2

− �2 �81�

In evaluating ����± from Eq. �81� we can replace � by 2n2 for
simplicity. The resulting error in doing so is less than 0.5%. It is
noted that fairly good agreement in amplitudes between the ex-
perimental results and analytical prediction can be observed. Al-
though the bifurcation points are off somewhat, the multiple scale
analysis predicts the jump phenomenon quite well.

10 Conclusions
In this paper we study the nonlinear vibration of a shallow arch

with one end attached to an electro-mechanical shaker. The arch is
excited in the axial direction. In the experiment we can control the
excitation force on the end mass but not the end motion of the
arch. Attention is focused on two cases, i.e., the coupling reso-
nance and parametric resonance. In the case of coupling resonance
the excitation frequency is close to the natural frequency of the
nth mode. In the parametric resonance case, the excitation fre-
quency is two times the nth natural frequency. Experimental, nu-
merical, and analytical methods are used to look into the physical
insight of these complicated nonlinear oscillation phenomena.
Several conclusions can be summarized in the following.

�1� Geometrical imperfection is the key for the coupling reso-
nance to occur. For a perfect sinusoidal arch, the nth mode
will not be excited even when the excitation frequency is
close to its corresponding natural frequency. When geo-
metrical imperfection exists, which is almost inevitable in
the real world, the first mode and the axial mode will be
excited directly by the excitation in a “nonresonant” man-
ner, and then these modes in turn excite the nth mode in-
ternally.

�2� In the case of parametric resonance, two stable steady state
solutions can exist simultaneously when the excitation fre-
quency is slightly lower than two times the nth natural
frequency. As a consequence jump phenomenon is ob-
served when the excitation frequency sweeps upward. The
effect of geometrical imperfection on the steady state re-
sponse is minimal in this case. While only the stable steady
states can be realized in the experiment, the multiple scale
method can predict both the stable and unstable solutions.
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Localized Magnetoelastic
Bending Vibration of an
Electroconductive Elastic Plate
The study of the magnetoelastic vibrations of a flat plate immersed in a uniform applied
external magnetic field is presented. Kirchhoff’s plate theory and the model of a perfect
conductive medium are used. The conditions for the existence of localized bending vibra-
tions in the vicinity of the free edge of the plate are established. It is shown that the
localized vibrations can be detected and eventually can be eliminated by means of an
applied magnetic field. �DOI: 10.1115/1.2424469�

1 Introduction
Health monitoring of modern structures poses new challenges

with regard to increased safety and operational reliability. Differ-
ent schemes or algorithms for damage detection, remote monitor-
ing, and continuous real time evaluation are increasingly needed.
Of particular importance is the detection of material defects using
nondestructive techniques, such as ultrasonic void and crack de-
tection. For a comprehensive literature review on damage identi-
fication and health monitoring, the reader is referred to Ref. �1�
and the references therein.

Presented in this paper is a theoretical contribution toward the
development of a novel structural health monitoring technique
�SHMT� based on vibration characteristics. Of critical importance
to this form of structural health monitoring is the fact that the
presence of defects, cracks, and dynamic changes in elastic, elec-
trically conductive, structures may be identified through measure-
ment of an electromagnetic field at a known distance from the
elastic body. This is a comparative method, meaning a baseline
measurement must be acquired prior to evaluation of the target
structure. Other comparative techniques include piezoelectric sen-
sors and ultrasonic imaging. However, the magnetoelastic tech-
nique presented in this paper differs from other nondestructive
�ND� SHMT’s.

Using an external magnetic field to create induced magnetic
fields around defects in vibrating, electrically conductive materials
allows detection to occur on a global scale. Since the magnetic
field penetrates the entire structure, any defects may be observed
by measurement of the magnetic field produced by vibrating the
structure, referred to as vibration induced magnetic response
�VIMR�. Piezoelectric devices only measure defects within the
range of their installation locale. Also, whereas the use of piezo-
electric sensors requires installation within the matrix of the struc-
ture, potentially initiating defects in construction, VIMR can be
measured passively and does not require sensors to be installed
within the matrix. Also, unlike ultrasonic techniques, the magne-
toelastic technique may be used remotely.

The physical model of VMIR is easily described by the differ-

ence between vibration frequencies close to and far from defects.
These localized bending waves are usually located where cracks
and defects are located and they produce a unique magnetic re-
sponse in the presence of an externally applied magnetic field
since the frequency of the localized waves is usually much lower
than other bending waves. Thus, by measuring the electromag-
netic field intensity of electro-active elastic structures, it is theo-
retically possible to passively identify the location of cracks or
defects.

Localized bending plate vibrations were first investigated by
Konenkov �2�. Subsequently, the model presented in Ref. �2� was
widely developed in Refs. �3–8� and then in Refs. �9,10� extended
to the study of vibrations in a simply modeled, perfectly electro-
conductive plate. Considering the hypothesis of magnetoelasticity
of thin bodies �11–15�, the spatial problem of magnetoelastic vi-
bration can be reduced to two dimensions. Application of simple
models depends on the direction of the external magnetic field
�longitudinal or transverse� as well as the character of the consid-
ered problem �planar or transverse vibrations� �16,17�. A review
of investigations in the field of electromagneto mechanics of thin
plates and shells is given in Ref. �13�.

A number of basic linear problems of nonlocalized vibrations of
conductive plates and shells of various configurations were solved
in the case of arbitrary orientation of an external magnetic field
�11–17�. In addition, in the framework of the main assumptions of
the magnetoelasticity hypothesis, the nonlocalized nonlinear mag-
netoelastic vibrations of electroconductive plates are studied in
Refs. �18,19�. The basic field equations and boundary conditions
necessary for the dynamic approach of electromagnetically con-
ducting flat plates subjected to an external magnetic field are de-
rived in Ref. �18�, while investigation of the interacting effects
among the magnetic, thermal, and elastic fields in orthotropic thin
plates has been presented in Ref. �19�.

In Sec. 2 the mathematical model will be presented while in
Sec. 3 two typical cases will be illustrated Sec. 3.1 presents the
application of a magnetic field perpendicular to the axis along
which the wave propagates. Sec. 3.2 presents the application of a
magnetic field parallel to the axis along which the wave propa-
gates. In Sec. 4, pertinent conclusions will be illustrated.
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2 Mathematical Model
To illustrate the proposed method we will consider the case of

an elastic electroconductive plate in the Cartesian frame x1=x,
x2=y, x3=z. The plate is immersed in the external longitudinal
magnetic field parallel to the �x ,y� plane, as shown in Fig. 1. That

is H� 0=H01i�x+H02i�y, H01=const, and H02=const. The three-
dimensional equations of the plate vibrations can be written as
�12,20�

��ik

�xk
+ Fi = �

�2ui

�t2 , �i = 1,2,3� �1�

where ui, Fi, �ij are the components of the elastic plate displace-

ment vector u� , electromagnetic bulk force vector F� , and elastic
stress tensor �̂, respectively; and � is the density of the plate
material. In Eq. �1� and thereafter, the rule of summation, �indices
k� are assumed with respect to dummy indices. Considering the
plate’s perturbed state, the vector of electromagnetic bulk force is
represented by

F� =
1

c
�j� � H� 0� �2�

Here j� is the density vector of the induced electric current; and c
is the electrodynamic constant equal to the velocity of light in a
vacuum. The Gaussian system of electromagnetic units is used.

By means of the Maxwell electromagnetic tensor T̂, Fi can be
written as �12,21�

Fi =
�Tik

�xk
�3�

where Tik are the components of Maxwell electromagnetic tensor

T̂. The components of the linearized Maxwell electromagnetic
tensor can expressed as

Tik =
1

4�
�H0khi + H0ihk −

�ik

2
H0shs� �4�

where the indices s indicate dummy indices.
The current–density vector j� of the perturbed plate can be ex-

pressed as

j� = ��e� +
1

c

�u�

�t
� H� 0� �5�

In Eqs. �4� and �5�, e� is the induced electrical field vector; h� is the
induced magnetic field vector; hi are the components of the vector
h�; while � is the electro-conductivity of plate material, and �ik is
Kronecer’s delta symbols.

In the plate body the perturbed electrical and magnetic fields
�vectors e� and h�� satisfy the Maxwell electrodynamics quasi-
stationary equations for deformable bodies �12,21�

rot e� +
1

c

�h�

�t
= 0 �6a�

rot h� =
4�

c
j� �6b�

div h� = 0 �6c�

div e� = 4��e �6d�

where �e is the density of electrical charges. On the other hand, in
the vacuum outside of the plate, the following Maxwell electro-
dynamics equations with respect to the perturbed electrical and

magnetic fields �vectors e��e� and h� �e�� are satisfied

rot e��e� +
1

c

�h� �e�

�t
= 0 �7a�

rot h� �e� −
1

c

�h� �e�

�t
= 0 �7b�

div h� �e� = 0 �7c�

div e��e� = 0 �7d�

where “e” identifies quantities associated to the outer plate do-
main �i.e., of the vacuum�. On the plate surface � the following
boundary conditions have to be fulfilled

��ik + Tik − Tik
�e��nk = 0 �8a�

Herein Tik
�e� are the components of the corresponding Maxwell

electromagnetic tensor T̂�e� of the outside media; and nk are the
components of the outward normal vector n� at the plate surface �.

The vectors e�, h� , e��e�, h� �e� are coupled through the boundary con-
ditions at �

�h� − h� �e�� · n� = 0, �e� − e��e�� � n� = 0 �8b�

The equations and boundary conditions are three dimensional.
Based on the analysis of the exact solutions of the specific prob-
lems at hand and the asymptotic behavior of the general solutions
of the three-dimensional problem of magnetoelasticity of thin
bodies �12�, the hypothesis of the magnetoelasticity of electrocon-
ductive thin bodies can be formulated. Besides assumptions of
Kirchhoff’s plate theory �12,13�, the main assumptions of this
hypothesis consist of tangential components of induced electrical
field vector and normal component of induced magnetic field vec-
tor in the body of elastic plate which remain unchanged along the
plate thickness. This hypothesis enables one to reduce the three-
dimensional coupled equations to two-dimensional equations.
Considering the problem of the plate free vibration in a longitu-
dinal magnetic field, it has been found that the assumptions of the
hypothesis of the magnetoelasticity of electroconductive thin bod-
ies and the model of perfectly conducting media �12� achieve the
same results with sufficient accuracy.

According to the model of perfect conducting medium ��
→�� the perturbed electrical field e� from Eq. �5� can be recast as
�10�

e� = −
1

c

�u�

�t
� H� 0 �9a�

Based on Eqs. �6�, the perturbed magnetic field h� and the induced
electric current j� are defined as follows

h� = rot�u� � H� 0� �9b�

Fig. 1 Model of a plate immersed in a magnetic field in x and y
directions
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j� =
c

4�
rot h� �9c�

According to the Kirchhoff’s plate theory �12,13� the following
assumptions for displacements and main stresses are taken into
account

u1�x,y,z� = u�x,y� − z
�w

�x
�10a�

u2�x,y,z� = v�x,y� − z
�w

�y
�10b�

u3 = w�x,y� �10c�

�11 =
E

1 − v2� �u

�x
+ �

�v
�y

− z� �2w

�x2 + �
�2w

�y2 �� �11a�

�22 =
E

1 − v2� �v
�y

+ �
�u

�x
− z� �2w

�y2 + �
�2w

�x2 �� �11b�

�12 =
E

2�1 + v��� �u

�y
+

�v
�x
� − 2z

�2w

�x�y
� �11c�

Here u�x ,y�, v�x ,y� are tangential displacements; w�x ,y� is the
normal displacement of the plate’s middle plane; E is the modulus
of elasticity; and � is Poisson’s ratio.

Based on Eqs. �9b�, the components of the magnetic field vector
can be defined as

hx = H02
�u

�y
− H01

�v
�y

− z�H02
�2w

�x�y
− H01

�2w

�y2 � �12a�

hy = H01
�v
�x

− H02
�u

�x
− z�H01

�2w

�x�y
− H02

�2w

�x2 � �12b�

hz = H01
�w

�x
+ H02

�w

�y
�12c�

The components of the Maxwell tensor can be written as

Txx =
1

4�
�H01hx − H02hy� =

1

4�
�z�H01

2 �2w

�y2 − H02
2 �2w

�x2 � + H02
2 �u

�x

− H01
2 �v

�y
+ H01H02� �u

�y
−

�v
�x
�� �13a�

Tyy = − Txx �13b�

Txy =
1

4�
�H01hy + H02hx� =

1

4�
z01�H01H02	w − �H01

2 + H02
2 �

�2w

�x�y
�

+
1

4�
�H02

2 �u

�y
+ H01

2 �v
�x

− H01H02� �u

�x
+

�v
�y
�� �13c�

Txz =
1

4�
H01hz =

1

4�
�H01

2 �w

�x
+ H01H02

�w

�y
� �13d�

Tyz =
1

4�
H02hz =

1

4�
�H02

2 �w

�y
+ H01H02

�w

�x
� �13e�

Tzz = −
1

4�
�H01hx + H02hy� =

1

4�
z�2H01H02

�2w

�x�y
− �H01

2 �2w

�y2

+ H02
2 �2w

�x2 �� +
1

4�
�H02

2 �u

�x
+ H01

2 �v
�y

− H01H02� �u

�y
+

�v
�x
��
�13f�

Averaging the three-dimensional equations along coordinate z, in

the plate thickness direction, the two-dimensional equations of
plate vibration can be cast as

�Q1

�x
+

�S

�y
+	

−h

h � �Txx

�x
+

�Txy

�y
�dz + �xz�h� − �xz�− h� + Txz�h�

− Txz�− h� = 2�h
�2u

�t2 �14a�

�Q2

�y
+

�S

�x
+	

−h

h � �Txy

�y
+

�Txy

�x
�dz + �yz�h� − �yz�− h� + Tyz�h�

− Tyz�− h� = 2�h
�2v
�t2 �14b�

�N1

�x
+

�N2

�y
+	

−h

h � �Txz

�x
+

�Tyz

�y
�dz + �zz�h� − �zz�− h� + Tzz�h�

− Tzz�− h� = 2�h
�2w

�t2 �14c�

�M1

�x
+

�M12

�y
+	

−h

h

z� �Txx

�x
+

�Txy

�y
+

�Txz

�z
�dz + h��xz�h�

+ �xz�− h�� = N1 �14d�

�M12

�x
+

�M2

�y
+	

−h

h

z� �Tyy

�y
+

�Txy

�x
+

�Tyz

�z
�dz + h��yz�h�

+ �yz�− h�� = N2 �14e�

Here

Q1 =	
−h

+

�xx dz =
2Eh

1 − v2� �u

�x
+ �

�v
�y
� �15a�

Q2 =	
−h

+

�yy dz =
2hE

1 − v2� �v
�y

+ �
�u

�x
� �15b�

S =	
−h

+

�xy dz =
Eh

�1 + v�
� �u

�y
+

�v
�x
� �15c�

M1 =	
−h

h

z�xx dz = − D� �2w

�x2 + �
�2w

�y2 � �15d�

M2 =	
−h

h

z�yy dz = − D� �2w

�y2 + �
�2w

�x2 � �15e�

M12 =	
−h

h

z�xy dz = − D�1 − ��
�2w

�x�y
�15f�

D 

2Eh3

3�1 − �2�
�15g�

are expressions for the stress resultants Qi�x ,y�, S�x ,y�, and stress
couples Mi�x ,y�, where D is the stiffness of the plate material; and
N1 and N2 are shear force resultants.

Based on Eq. �8a�, the following boundary conditions are set on
the plate faces �z= ±h�
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�zi + Tzi = Tzi
�e� �i = x,y,z� �16�

where Tzj, Tzj
�e� are the components of the Maxwell tensor of the

internal region occupied by the plate and the external region out-
side of the plate, respectively.

Notice that, from the boundary conditions and Eq. �15�, the
plate vibration equations must be solved jointly with the electro-
dynamic equations for the media surrounding the plate. This situ-
ation essentially complicates the problem of magnetoelastic vibra-
tions of the plate. However solutions can be obtained when the
magnetic field is parallel to the planes bounding the plate. In such
a case, the conditions of continuity of the normal components of
perturbed induction of the magnetic field �hz=hz�e�� should be sat-
isfied on the z= ±h planes. Based on this continuity condition
hz�±h�=hz�e��±h� we have

Tzx�±h� − Tzx
�e��±h� = 0 �17a�

Tzy�±h� − Tzy
�e��±h� = 0 �17b�

and therefore

�xz�±h� = 0, �yz�±h� = 0 �18�

Neglecting Tzz
�e� in comparison with Tzz, since there is discontinuity

of the tangential component of the perturbed magnetic field, the

boundary conditions of Eq. �8a� are being replaced with the fol-
lowing

�zz�±h� + Tzz�±h� = 0 �19�

Substituting Eqs. �17�–�19�, into Eq. �14�, the equations for the
plate planar and bending vibrations can be obtained as follows

1. Planar vibration

	u + 

�

�x
� �u

�x
+

�v
�y
� +

H02

4�G
	u −

H01H02

4�G
	v =

�

G

�2u

�t2

�20a�

	v + 

�

�y
� �u

�x
+

�v
�y
� +

H01

4�G
	v −

H01H02

4�G
	u =

�

G

�2v
�t2

�20b�

Herein the following notations are used


 =
1 + �

1 − �
, G =

E

2�1 + ��
, 	 


�2

�x2 +
�2

�y2

2. Bending vibration

D	2w −
h

2�
�H01

2 �2w

�x2 + H02
2 �2w

�y2 + 2H01H02
�2w

�x�y
� + 2�h

�2w

�t2 +
h3

6�
��H02

2 �2

�x2 + H01
2 �2

�y2 − 2H01H02
�2

�x�y
�	w� −

2�h3

3

�2

�t2	w = 0

�21�

Notice that Eq. �21�, governing the plate bending vibration, is
decoupled from Eqs. �20a� and �20b� of in-plane vibrations. In
addition, the underlined expression is negligible as compared to
the other terms, and therefore this term will not be taken into
account.

The boundary conditions on the plate’s x=const and y=const
edges are obtained by averaging the boundary conditions of the
spatial problem of the theory of magnetoelasticity for a perfect
conductive medium

	
−h

+h

ui dz = 0	
−h

+h

zui dz = 0 �22a�

	
−h

+h

��xi + Txi�dz =	
−h

+h

Txi
�e� dz �22b�

	
−h

+h

z��xi + Txi�dz =	
−h

+h

zTxi
�e� dz �22c�

Clearly, the boundary conditions for the fixed, hinged edges are
the same as in the common plate theory.

We have common boundary conditions with regard to normal
deflection, w�x ,y�, with the exception of the case of the free edge.
In this case, the boundary conditions at the x=const edge can be
written as

M1 = 0 �23a�

N1 +
�M12

�x
+

h

2�
�H01

2 �w

�x
+ H01H02

�w

�y
�

+
h3

6�
�H01H02

�

�y
− H02

2 �

�x
�	w = 2hTxz

�e� �23b�

Substituting the expressions for N1, M1, M12, from Eqs. �14� and
�15� into Eq. �23�, and neglecting Txz

�e� in comparison with Txz due
to the discontinuity of the tangential �to x=const edge� component
of the perturbed magnetic field hz, the following boundary condi-
tions at x=const are assumed

� �2w

�x2 + �
�2w

�y2 � = 0 �24a�

D
�

�x
� �2w

�x2 + �2 − ��
�2w

�y2 � −
h

2�
�H01

2 �w

�x
+ H01H02

�w

�y
�

−
h3

6�
�H01H02

�

�y
− H02

2 �

�x
�	w = 0 �24b�

Also in this case, the underlined expression is negligible as com-
pared to the other terms and later will not be taken into account.

3 Selected Cases
Let us consider the localized bending vibrations of a semi-

infinite plate which occupies the space 0�x��, −��y��,
−h�z�h �see Fig. 1�.

It is assumed that the localized waves are propagating along the
y axis. Two cases will be considered: �a� a magnetic field that is
perpendicular to the axis along which waves are propagating,
H01�0, H02=0; and �b� a magnetic field that is parallel to the axis
along which waves are propagating, H01=0, H02�0.
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3.1 Case A: Plate Immersed in a Magnetic Field That is
Perpendicular to the Axis Along Which the Waves are Propa-
gating, H01Å0, H02=0. In Case A, in the region 0�x��; −�
�y�� the governing equation of bending vibration can be cast
as

D	2w −
hH01

2

2�

�2w

�x2 + 2�h
�2w

�t2 = 0 �25�

and the associated boundary conditions at x=0 are

� �2w

�x2 + �
�2w

�y2 � = 0 �26a�

D
�

�x
� �2w

�x2 + �2 − ��
�2w

�y2 � −
hH01

2

2�

�w

�x
= 0 �26b�

At x→� the vibration damps out, implying that

lim
x→�

w = 0 �27�

The solution of Eq. �25� satisfying the condition from Eq. �27� can
be cast as

w�x,y� = w0�C1e−kpx + C2e−kqx�exp i�t − ky� �28a�

where k is a wave number; and  is a frequency of vibration:

p = ��1 + � + ��2 + 2� + �2� �28b�

q = ��1 + � − ��2 + 2� + �2� �28c�

and

�2 =
2�h2

Dk4 �28d�

� =
hH0

2

4�Dk2 �28e�

=
3H0

2�1 − v2�
8�Ek2h2 �28f�

The nondimensional � parameter in Eq. �28c� defines the fre-
quency of localized vibration, and according to the condition of
damping, Eq. �27�, it should satisfy the following inequalities

0 � �2 � 1 �29�

Substituting the solution, Eq. �28a�, into the boundary conditions,
Eqs. �26�, a homogeneous system of equations, with respect to the
arbitrary C1 ,C2 constants, are obtained. The dispersion equation
can be obtained by equating the determinant of the simultaneous
set of equations to zero, yielding

K��� 
 q�p2 − v��q2 − �2 − v − 2��� − p�q2 − v��p2 − �2 − v − 2���

= 0 �30a�

or in a compact form

K��� 
 �p − q�K1��� �30b�

where

K1��� 
 �pq�2 + 2�1 − v − ��pq − v2 �30c�

Since p�q, the frequency of the vibrations can be obtained from
the equation

K1��� = 0 �31�

Noting that

dK1

d�
� 0 at 0 � � � 1 �32a�

K1�0� = �1 − v��3 + v� − 2�, K1�1� = − v2 � 0 �32b�

one can conclude that Eq. �30� has only one root in the interval
0���1 when K1�0��0. Therefore, the sufficient and necessary
conditions of localized wave existence are

� � �3 + v��1 − v�/2, v � 0 �33�

The root of Eq. �31� is found in the following way

�2 = 1 + 2�1 − v − ����1 − v − ��2 + v2 − 2�1 − v − ��2 − v2

�34�

From Eq. �33�, it follows that in satisfying the condition

H01
2 � 4�E�kh�2�3 + ��/3�1 + �� �35�

the localized vibrations in the vicinity of the free edge of the plate
are eliminated.

In particular, for a metal plate �E=110 GPa; v=0.3� with rela-
tive wavelength of kh=0.02 and kh=0.01 the induction of the
intensity of the magnetic field ��0=1.15� necessary for eliminat-
ing the localized vibrations is on the order of H01�1.5T and
H01�0.37T, respectively

3.2 Case B: Plate Immersed in a Magnetic Field That is
Parallel to the Axis Along Which the Waves are Propagating,
H01=0, H02Å0. In this case we have the following boundary
value problem

D	2w −
hH02

2

2�

�2w

�y2 + 2�h
�2w

�t2 = 0 0 � x � �; − � � y � �

�36�

and boundary conditions at x=0

� �2w

�x2 + �
�2w

�y2 � = 0 �37a�

D
�

�x
� �2w

�x2 + �2 − ��
�2w

�y2 � = 0 �37b�

At x→�, the vibration damps out, and Eq. �27� is valid.
The solution of Eq. �36� satisfying the condition Eq. �27�, can

be written as

w�x,y� = w0�C1e−kp̃x + C2e−kq̃x�exp i�t − ky� �38a�

where

p̃ = �1 + ��2 − 2� , �38b�

q̃ = �1 − ��2 − 2� �38c�

The notations for the �2 and � are the same as in Eqs. �28c� and
�28d�.

The condition of the existence of the localized vibrations is
formulated in the following way

2� � �2 � 1 + 2� �39�

The dispersion equation is obtained from the requirement that the
solution, Eq. �38�, should fulfill the boundary conditions from Eq.
�37� as

K2��� 
 �p̃q̃�2 + 2�1 − v��p̃q̃� − v2 = 0 �40�

The function K2��� at the ends of the interval of Eq. �39� results in

K2�2�� = �1 − v��3 + v�/2 � 0, K2�1 + 2�� = − v2 � 0 �41�

Therefore, the localized vibrations exist �v�0�, regardless of the
magnitude of intensity of the magnetic field. Notice that the influ-
ence of the magnetic field on the localized vibrations in this case
is weaker than in the previous case.
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4 Results
In Table 1 the localized vibration frequencies �1 and �2 are

given as a function of the magnetic field parameter � and Pois-
son’s ratio �. The frequencies �1�� ,�� correspond to the case of
the magnetic field H01 acting in a direction perpendicular to the
axis along which the waves are propagating, while the frequencies
�2�� ,�� correspond to the case of the magnetic field H02 acting in
a direction that is parallel to the axis along which the waves are

propagating. Dashes in the table correspond to the lack of local-
ized vibration. For the first case, application of H01, we have a
decrease in the localized vibration frequencies when magnetic
field increases up to critical value �0= 1

2 �3+���1−��, beyond
which the localized vibration vanishes. For the second case, ap-
plication of H02, it is evident that there is an increase in the local-
ized vibration frequencies for increasing magnetic field intensity,
implying that there are always localized vibrations. The data pre-
sented in Table 1 are obtained from Eqs. �31� and �40�, respec-
tively. These cases have also been reported in Figs. 2 and 3, for
Cases A and B, respectively.

5 Conclusions
The study of planar and bending magnetoelastic vibrations of a

perfectly conductive flat plate immersed in a uniform external
magnetic field is presented. For this system, this paper demon-
strates the presence of localized bending vibrations in the vicinity
of the plate free edge and shows that localized vibrations can be
detected and eliminated by means of the magnetic field.
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Nomenclature
c � electrodynamic constant, speed light in a

vacuum
C1 ,C2 � arbitrary constants Eq. �28a�

D � stiffness of plate material
e� � induced electric field vector
E � modulus of elasticity of plate material

F� ,F1 � electromagnetic bulk force vector and com-
ponents, respectively

2h � plate thickness

h� ,hi � induced magnetic field vector and compo-
nents, respectively

H� ,H0.1 ,H0.2 � magnetic field vector and tensor coordinate
in the x and y dimensions, respectively

j� � induced current vector
k � wave number

Mi � stress couples Eqs. �15d�–�15f�
n� ,nk � outward normal vector vector to plate sur-

face and components, respectively
Qi � stress resultants Eqs. �15a� and �15b�

N1 ,N2 � shear force resultants Eqs. �14c�.
S � stress resultant Eq. �15c�

Fig. 2 Frequency spectrum from Case A

Fig. 3 Frequency spectrum from Case B

Table 1 Dimensionless localized vibration frequencies for selected magnetic field and Poisson’s ratio

� 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

�1=0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.97 0.90 0.78 0.58 —
�=0.1 �2=0.99 1.09 1.18 1.26 1.34 1.41 1.48 1.54 1.61 1.67 1.73 1.78 1.84 1.89 1.94

�1=0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.97 0.94 0.87 0.75 0.53 — —
�=0.2 �2=0.99 1.09 1.18 1.26 1.34 1.41 1.48 1.54 1.61 1.67 1.73 1.78 1.84 1.89 1.94

�1=0.99 0.99 0.99 0.99 0.99 0.98 0.97 0.95 0.90 0.83 0.68 0.43 — — —
�=0.3 �2=0.99 1.09 1.18 1.26 1.34 1.41 1.48 1.54 1.61 1.67 1.73 1.78 1.84 1.89 1.94

�1=0.99 0.99 0.98 0.97 0.96 0.94 0.85 0.76 0.6 0.25 — — — — —
�=0.4 �2=0.99 1.08 1.17 1.25 1.33 1.40 1.47 1.54 1.60 1.66 1.72 1.78 1.83 1.89 1.94

�1=0.98 0.97 0.95 0.94 0.91 0.86 0.79 0.67 0.46 — — — — — —
�=0.5 �2=0.98 1.07 1.16 1.24 1.32 1.39 1.46 1.53 1.59 1.66 1.71 1.77 1.83 1.88 1.91
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t � time

T̂ ,Tik � Maxwell electromagnetic tensor and com-
ponents, respectively

u� ,ui � elastic plate displacement vector
u ,v ,w � displacements of plate’s middle plane

x1 ,x2 ,x3 � vector reference frame
x ,y ,z � Cartesian reference frame

� � dimensionless parameter of magnetic field
intensity

� � dimensionless frequency of localized
vibration

� � Poisson ratio of plate material
 � frequency of vibration
� � plate surface
� � density of plate material

�e � density of electrical charges
�̂ ,�ik � elastic stress tensor and components,

respectively
� � electric conductivity of plate material

�ik � Kronecer’s delta symbol
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Analytical, numerical, and experimental results of energy pumping in a strongly inhomo-
geneous two-degree-of-freedom system are to be presented in this study. The latter is
based both on efficient analytical solution and comparative analysis for various types of
energetic sinks. Considering the efficient pumping process as damped beating with strong
energy transfer, it is shown that we can design the sinks with amplitude-phase variables
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to be compared. Computer simulation has confirmed the analytical predictions which had
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1 Introduction
The problem of passive irreversible transfer of mechanical en-

ergy �referred to as energy pumping� in oscillatory systems is now
a subject of growing interest �1–9�. This paper tackles a nonlinear
energy sink �NES�. The NES is a passive isolation device which is
basically composed of a nonlinear and weakly damped oscillator.
This nonlinear oscillator is coupled to the primary system to ab-
sorb energy. The first papers in this field �1–5� were devoted to the
demonstration of the phenomenon itself, but only on one condi-
tion: both the main subsystem and the energetic sink have to be of
an equal mass. In Ref. �1�, the redistribution of energy was con-
sidered after impulsive inputs had been applied to a linear primary
system coupled to a NES. This redistribution of energy was re-
ferred to as “energy pumping.” It occurred in a one-way and irre-
versible fashion: the energy, once pumped from the linear to the
nonlinear oscillator, does not return back into the linear system.
Energy pumping was attributed to 1:1 resonance capture �3�. Ref-
erences �3,4� demonstrated that the NES’s damped dynamics is
dependent on its undamped dynamics. To be more precise, it was
shown that the undamped system possesses a nonlinear normal
mode �NNM� which has a large amount of energy localized in the
nonlinear oscillator. When weak damping is added, this NNM is
transformed into a damped NNM, and when the latter is suffi-
ciently excited, energy pumping occurs. A recent study �7� took
into account a possible strong asymmetry of the masses. Plus, it
was assumed that such a sink was not only coupled with the main
subsystem but was also linked to the ground with an anchor
spring. As this assumption does not correspond to realistic condi-
tions required for applications in engineering, such a restriction is
to be removed from this paper. Instead, we will consider a “free”
attachment, that is to say a strong nonlinear attachment �strongly
inhomogeneous two-degree-of-freedom system� coupled to a lin-
ear primary system. Although there are numerous papers devoted
to the study of the NES, most attempt to explain the phenomenon
which is responsible for energy pumping, but none was found to
design optimal energetic sink parameters for given primary sys-
tem specifications.

As the phenomenon of energy pumping in a strongly nonlinear
damped system �1–9� clearly manifests regularities of transitional
dynamical processes in the vicinity of internal resonances �10�, a
series of significant problems can be formulated, and among them
is the following question: What are the possibilities of optimiza-
tion of energetic sink parameters? The efficient analytical descrip-
tion of the pumping process in a strongly inhomogeneous two-
degree-of-freedom system proposed in Ref. �9� turned out to be
appropriated to the resolution of the optimization problem if ap-
plied to a “cubic”-type sink which has widely been studied in
previous papers �14�. In parallel, some other strongly nonlinear
sinks have also been discussed within the framework of energy
pumping problems. However, isolated numerical estimations as
well as the absence of criteria on sinks efficiency make their com-
parison difficult. Therefore, such a criterion has been proposed in
Ref. �14� by considering the energy pumping process as a damped
beating, and is now being developed in the present paper. To-
gether with this study, experimental verifications are to be carried
out using a reduced-scale building �13�.

2 Analytical Study
The following system of coupled oscillators is considered

M
d2x1

dt2 + �̃1
dx1

dt
+ �̃�dx1

dt
−

dx2

dt
� + k1x1

+ k3�x1 − x2�2n−1 ± D�x1 − x2� = 0

m
d2x2

dt2 − �̃�dx1

dt
−

dx2

dt
� − k3�x1 − x2�2n−1

±D�x2 − x1� = 0,

n � 2 �1�

Nonlinear coupling with multiple states of equilibrium corre-
sponds to the sign “�” in the terms ±D�x2−x1�. The linear pri-
mary structure is excited by an impulse, so we consider free os-
cillations of structures with initial conditions: x1�t=0�=x2�t=0�
=dx2 /dt�t=0�=0, dx1 /dt�t=0�=CI.

System �1� can be analyzed by using the perturbation theory.

The following change of variables Ũ1=x1, Ũ2=x2−x1 is consid-
ered. Then system �1� looks like
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�M + m�
d2Ũ1

dt2 + m
d2Ũ2

dt2 + �̃1
dŨ1

dt
+ k1Ũ1 = 0

m
d2Ũ2

dt2 + m
d2Ũ1

dt2 + �̃
dŨ2

dt
+ k3Ũ2

2n−1 ± DŨ2 = 0,

n � 2

To clarify the equations, dimensionless coefficients and displace-
ments are used and previous equations are rewritten as

�1 + ��
d2U1

d�2 + �
d2U2

d�2 + ��1
dU1

d�
+ U1 = 0

�
d2U2

d�2 + �
d2U1

d�2 + ��
dU2

d�
+ cU2

2n−1 ± ��U2 = 0,

n � 2 �2�

where

� =�k1

M
, U1 =

�

CI
Ũ1, U2 =

�

CI
Ũ2,

� =
m

M
, � = �t, ��1 =� 1

k1M
�̃1,

�� =� 1

k1M
�̃, �� =� 1

k1M
D

and

c =
CI

2n−2k3

�2n−2k1

� is a small parameter, representing a mass ratio which has to be
very small.

The infinitesimal order of the nonlinear terms in the second
equation of System �2� is less than the infinitesimal order of linear
terms in the same equation. The following change of variables
u1=�−1/�2n−2�U1, u2=�−1/�2n−2�U2 is introduced. Then Eq. �2� looks
like

�1 + ��
d2u1

d�2 + �1 + ��u1 + ��d2u2

d�2 + �1
du1

d�
− u1� = 0

d2u2

d�2 + u2 + ��− 	u2 + 	
d2u1

d�2 + 	�
du2

d�
+ 	cu2

2n−1 ± 	�u2� = 0

�3�

where 	=1/�.
Then we assume that the oscillations occur next to the reso-

nance on frequency �. Indeed, as shown in a lot of numerical
evidence �2,8� and analytical results �5,6,14�, when energy pump-
ing occurs, u1 and u2 are oscillating with the same frequency. So,
to validate this point we should suppose that

	�− u2 +
d2u1

d�2 + �
du2

d�
+ cu2

2n−1 ± �u2� � O�1� �4�

Such a procedure is fully justified by detailed numerical analy-
sis and by numerous previous papers. Therefore expression in
brackets should be of order � �but each term in the sum is not
necessarily small�. It is rather natural, since it describes slow
modulation and damping of the vibrations with frequency close to
unity. Then Eq. �3� appears as follows

�1 + ��
d2u1

d�2 + �1 + ��u1 + ��d2u2

d�2 + �1
du1

d�
− u1� = 0

d2u2

d�2 + u2 + �	�− u2 +
d2u1

d�2 + �
du2

d�
+ cu2

2n−1 ± �u2� = 0 �5�

Introducing the change of variables �11�


1 = e−i��du1

d�
+ iu1� 
1

* = ei��du1

d�
− iu1�


2 = e−i��du2

d�
+ iu2� 
2

* = ei��du2

d�
− iu2� �6�

and performing multiple scale analysis

�0 = �, �1 = ��, �2 = �2�, . . . �7�


1 = 
10 + �
11 + �2
12 + . . . �8a�


2 = 
20 + �
21 + �2
22 + . . . �8b�

leads to the equations

�
10

��1
+

i

2
�
20 + 
10� +

�1

2

10 = 0 �9�

and

�
20

��1
+ 		 i

2
�
20 + 
10� +

�

2

20 −

C2n−1
n−1 ic

22n−1 
20

20
2n−2 ±
i�

2

20� = 0

�10�

Equations �9� and �10� are multiplied by 
10
* and 
20

* , respec-
tively. Then, by combining these equations using the complex
conjugates, the following equation is obtained

�

20
2

��1
+ 	

�

10
2

��1
+ �	

20
2 + 	�1

20
2 = 0 �11�

If there is no damping in the system Eqs. �1�, i.e., �=�1=0,
then Eq. �11� is the conservation law of quantity H= 

20
2
+	

10
2 relative to time �1. One can consider relation �11� as an
ordinary differential equation with respect to function 

20
2, the
term 	�

10
2 /��1+	�1 

10
2 being a right-hand member. Apply-
ing direct Laplace transformation to Eq. �11�, we obtain its solu-
tion in the form

��s� =
G�s� + 

20
2�0�

s + 	�

where ��s� is a Laplace representation of function 

20
2��1�; and
G�s� is a Laplace representation of function −	��

10
2 /��1�
−	�1

10
2. After application of inverse Laplace transformation to
this equation, we can find the following representation for func-
tion H��1�

H��1� = e−	��1	H�0� + 	�	� − �1��
0

�1



10
2�p�exp�	�p�dp�
�12�

To find a solution, we expand the integral in the right-hand
member of Eq. �12� in a Taylor series in the vicinity of point �1
=0. It allows us to calculate function H��1� avoiding solutions of
Eqs. �9� and �10� or initial Eqs. �1�. Then Eq. �12� looks like

H��1� = e−	��1H�0� + 	�	� − �1�	�1

10
2�0� +
�1

2

2
�2
�10


�0�
�

10
�0�

��1
+ 	�

10
2�0�� + . . . �� �13�

The quantities H�0� and 

10
2�0� are known from the initial
conditions. The derivative �

10
 /��1 and higher-order derivatives
of function 

10
 at the same point �1=0 can be found from the
initial conditions and equations of motion �1�. In all the next nu-
merical examples, values of the system parameters are the same
and are given in Table 1.

We should notice that the treatment is based on computing the
Taylor series for solution of the averaged system. So, the number
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of terms taken into account in the series must be sufficient to have
good convergence of the series. Moreover, we must keep in mind
that the interest here is to obtain a complete analytical solution to
be able to design and optimize the nonlinear attachment. That is
why a “minimum” number of terms �with good approximation� is
taken into account. In all the next examples, the analytical ap-
proximation �13� is used taking into account the Taylor series up
to the terms of the fifth order on �1. We have computed the solu-
tion numerically �and we have done error evaluation� to be sure
that the number of terms we pick is sufficient For example, by
taking the values of system parameters indicated in Table 1 and
sign “�” in Eqs. �1�, we can compare the analytical approxima-
tion �13� by considering different orders on �1 for the Taylor series
expansion with the numerical solution Eq. �12� �the integral in Eq.
�12� is expanded in Taylor series�. Thus, Fig. 1 shows that the fifth
order is sufficient to have a good approximation �the maximum
errors between Eqs. �12� and �13� are the following: order 1�:
0.5155; order 2: 0.3158; order 3: 0.2395; order 4: 0.008792; order
5: 0.0049731; order 6: 0.0047692; and order 7: 0.0047474�.

When energy pumping occurs, the analytical approximation
�13� is suitable, as shown in Fig. 2. In this figure, the analytical
solution H of Eq. �13� �the fifth order for the Taylor series is
considered� is compared with the numerical integration of System
�1�. The system’s parameters are indicated in Table 1 and the �
sign is considered in Eqs. �1�.

In this case, energy pumping occurs as shown in Fig. 3 where
the numerical solutions of System �1� have been plotted with and
without coupling.

Not only is the analytical approximation �13� suitable, but the
different 
10, 
20 introduced are also a good approximation, as
shown in Fig. 4 where those analytical approximations are com-

pared with results of integrating initial System �1�. The system’s
parameters are indicated in Table 1 and the “�” sign remains in
Eqs. �1�.

If the “�” sign is considered in Eqs. �1�, then the analytical
expression �13� is also suitable, as shown in Fig. 5 where the
system’s parameters are indicated in Table 1 by taking into ac-
count the Taylor series up to the terms of the fifth order on �1,
inclusively.

So, it is now possible to attempt to design the optimal energy
sink owing to the calculation of H. Indeed, we can see that if the
“�” sign is considered in Eqs. �1�, then energy pumping appears
to be more efficient since the decrease of energy H is more abrupt.
The energy decreases are faster with the “�” sign in Eqs. �1� than
with the “�” sign �if all other parameters are fixed�, as shown in
Fig. 6 where the system’s parameters are indicated in Table 1.

Thus, energy pumping is more efficient when the “�” sign is
considered in Eqs. �1�, as shown in Fig. 7 with numerical integra-
tion of System �1� with the same values of parameters as shown

Table 1 Values of system parameters

Parameters Values

n 2
� 1
�1

0
� 0.1
� 0.5
c 0.8
� 0.2

dx1 /dt�t=0� 0.3

Fig. 1 Function H„t…. Comparison between the numerical so-
lution Eq. „12… and the analytical expression Eq. „13… for differ-
ent orders of the Taylor series.

Fig. 2 Function H„t…. Solid line depicts solution Eq. „13… taking
into account the Taylor series up to the terms of the fifth order
on �1, inclusive. Dash line depicts the numerical solution of
System „1….

Fig. 3 Responses with numerical integration of Eq. „1… with
and without coupling.
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previously. In this figure, it clearly appears that the vibrations are
almost completely attenuated at t=20 s when the “�” sign is con-
sidered in Eqs. �1�.

Moreover, we can also consider the influence of the degree n of
the nonlinearity on the efficiency of the sink. Indeed, for a given
set of parameters, an optimal value of n can be found for which
the efficiency of energy pumping is optimal. For this study, we
now consider the case of the “�” sign in Eqs. �1� since the effi-
ciency in this case seems better. For example, dx1 /dt�t=0�=0.4,
dx2 /dt�t=0�=x1�t=0�=x2�t=0�=0, n=2/3/4, �=0.2 are taken,
all other parameters are similar to those indicated in Table 1 and
the “�” sign is considered in Eqs. �1�. Then, the optimal value of
n is 3 �the degree of the nonlinearity is 5�, as shown in Fig. 8. In
this figure, we can also see that for n=4 the analytical approxi-
mation is not very suitable after t=30 s. Indeed, after t=30 s,
energy pumping does not occur and there is no longer any
resonance.

As we will see, important information about sink efficiency can
be extracted from analysis of the corresponding conservative sys-
tem. Indeed, energy pumping can take place only in the damped

system, and is caused by a 1:1 resonance capture of the dynamics
on a 1:1 resonant manifold of the system �3�. Reference �15�
pointed out a paradoxical fact, namely that although energy pump-
ing takes place only in the damped system, the dynamics govern-
ing this phenomenon is influenced by the structure of the NNMs,
e.g., the free and synchronous periodic motions of the underlying
undamped and unforced system �16�. In the following analysis,
we study the bifurcation structure of the NNMs of the undamped

Fig. 4 Function H„t…, Imag �10„t…, Re �10„t…, and Re �20„t…, com-
pared with numerical integration of System „1…

Fig. 5 Function H„t…. Solid line depicts solution Eq. „13… taking
into account the Taylor series up to the terms of the fifth order
on �1, inclusive. Dash line depicts the numerical solution of
System „1….

Fig. 6 Comparison of function H„t…: consideration of sign �
or� in Eqs. „1…

Fig. 7 Comparison of responses owing to numerical integra-
tion of „1…: consideration of sign � or � in Eqs. „1…

Journal of Applied Mechanics NOVEMBER 2007, Vol. 74 / 1081

Downloaded 04 May 2010 to 171.66.16.42. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



system of coupled oscillators. As shown in Ref. �17�, this NNM
bifurcation provides the necessary conditions for the occurrence
of nonlinear energy pumping in the corresponding damped
system.

If �=�1=0, Eqs. �9� and �10� look like

�
10

��1
+

i

2
�
20 + 
10� = 0 �14�

and

�
20

��1
+ 		 i

2
�
20 + 
10� −

C2n−1
n−1 ic

22n−1 
20

20
2n−2 ±
i�

2

20� = 0

�15�

By introducing the change of variables


10 = f1, 
20 = �	f2 �16�

they can be written as follows

�f1

��1
+

i

2
�f1 + �	f2� = 0 �17�

and

�f2

��1
+ �		 i

2
�f1 + �	f2� −

C2n−1
n−1 ic

22n−1 	�2n−1�/2f2
f2
2n−2 ±
i�

2
	1/2f2� = 0

�18�

The system is now completely integrable with the two first inte-
grals of motion

H1 = −
i

2
�
f1
2 + 	
f2
2� −

i

2
�f2f1

* + f1f2
*�

+
C2n−1

n−1 ic

22n−1 	n
f2
2n ±
i�

2
	
f2
2 �19�

and

N = 
f1
2 + 
f2
2 �20�

So we can introduce the following change of variables

f1 = �N cos �ei	1, f2 = �N sin �ei	2 �21�

and

� = 	1 − 	2 �22�

Finally we obtain

��

��1
−

�	

2
sin � = 0 �23�

and

��

��1
−

	 − 1

2
±

�	

2
− �	 cos � cotg 2� +

C2n−1
n−1 c

22n−1 	nNn−1 sin 2n−2� = 0

�24�

The free periodic solutions �NNMs� of the system �5� �with no
damping� correspond to stationary points of the slow flow Eqs.
�23� and �24�, obtained by setting the derivatives equal to zero

��

��1
= 0 ⇒ � = 0,� �25�

��

��1
= 0 ⇒

	 − 1

2
±

�	

2
± �	 cotg 2� +

C2n−1
n−1 c

22n−1 	nNn−1 sin 2n−2� = 0

�26�

It turns out that without loss of generality, we can consider only
one of the two stationary values of �; hence, in the following
analysis we assign �=0 and the � sign before �	 cotg 2� in Eq.
�26�. Then, the stationary solutions of Eq. �26� can be calculated.
Thus, for different values of N �with values of parameters indi-
cated in Table 1 except �=0� it is possible to plot the stationary
solutions of Eq. �26�, as shown in Fig. 9 where the bifurcation
diagrams with alpha as the varying parameter have been plotted.
Thus, under a certain value of N, only two NNMs exist �i.e., for a
fixed value of alpha, there are only two solutions for theta�, as
described in Figs. 9�a� and 9�b�, whereas four NNMs can exist for
a larger value of N, as underlined in Figs. 9�b�–9�e� �i.e., for a
fixed value of alpha, four solutions for theta exist�.

Moreover, by studying Eq. �26� more precisely, the following
conclusions can be drawn �two cases appear�:

1. First, if −��	−1� /2�±�	 /2�0 then for all values of N, only
two NNMs exist �i.e., for a fixed value of alpha, there are
only two solutions for theta�, as shown in Fig. 9; and

2. Second, if −��	−1� /2�±�	 /2�0 then under a certain value
of N two NNMs exist, as described in Fig. 9, and above a
certain value of N, four NNMs can be found �i.e., for a fixed
value of alpha, there are four solutions for theta�.

In the case where four NNMS appear, the energy pumping phe-
nomenon will occur when damping will be added. Indeed this
point can be explained by the fact that a beating phenomenon
appears when the damping is not present �this point has been
investigated in Ref. �17� and is described further on in this study�.

This nonlinear beating can also be seen in the two displace-
ments x1 and x2 as shown in Fig. 10, with the same values as
previously �the damping is not taken into account in this figure�.
Indeed, looking at the responses, it is obvious that there is a trans-
fer of energy taking place back and forth between the two masses.
There is a resonance of the nonlinear oscillator �x2�. In Fig. 10, x1
is not trending toward zero since the natural damping has not been
taken into account ��=0� and it is necessary for energy pumping
activation. By taking into account the damping �the NNMs are
calculated with no damping�, energy pumping will occur �i.e.,
one-way irreversible transfer of energy from one mass to another�,
as shown in Fig. 11 where damping has been taken into account
���0,�=0.15�, and all other parameters were identical to those
taken into account in Fig. 10. This point has been justified by Ref.
�1�: the conditions of resonance of x2 are searching without damp-
ing. This NNMs approach is common in energy pumping studies
�1–7�. References �1,3,5� demonstrated the dependence of the sys-
tem’s damped dynamics on its undamped dynamics. In particular,

Fig. 8 Comparison of H„t… for different values of n
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it was shown that the undamped system possesses a nonlinear
normal mode which has a large amount of energy localized in the
nonlinear oscillator. When weak damping is added, this NNM is
transformed into a damped NNM, and when it is sufficiently ex-
cited, energy pumping occurs. In our case, the beating phenom-
enon �when no damping is taken into account� is responsible for

energy pumping activation when damping is added. When natural
damping is added, all the responses are trending toward zero. That
is the reason why it is not justified to make a bifurcation diagram
by taking into account damping since energy pumping is a tran-
sient phenomenon �the stationary solutions are zero for each ini-
tial condition even if there is no energy pumping�. Therefore, the

Fig. 9 Bifurcation diagrams: stationary solutions of Eq. „26…

Fig. 10 Nonlinear beating with no damping
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efficiency of the sink is measured owing to bifurcation diagrams
shown in Fig. 9 in terms of undamped NNMs �resonance of the
nonlinear oscillator�.

3 Experimental Verification
An experimental study is achieved on a small scaled four-story

building to verify the previous results about energy pumping phe-
nomenon in a realistic case study. The experimental system is
shown in Fig. 12.

The four-story building, namely the linear master structure, was
manufactured by welding stainless-steel columns and supporting
beams. Steel plates were also welded on each story to simulate
realistic mixed steel–concrete slabs. The system is clamped on a
plexiglass plate mounted on a shaking table driven by a Linmot
electromagnetic linear motor. The latter is controlled by a Linmot
E1000 MT controller which is characterized by the ability to ef-
ficiently stream almost any excitation profile �sine dwells, sine
sweeps, random noise, pulses, earthquakes�. Data acquisition of
six PCB piezotronics accelerometers is performed by using a HP
3566A/67 analyzer up to a sampling frequency of 12,800 Hz. Lin-
ear eigenfrequencies and related specific damping of the main
structure are identified when analyzing averaged FrF response
curves obtained for random white noise or sine sweep excitations
as illustrated in Fig. 13.

Modal identification is performed by a pole-residual technique
using Matlab structural dynamic toolbox SDtools. Generally
speaking, eigenmodes are shear modes because of the low stiff-
ness of the columns and high plates. As a result accelerometers
placed on each story of the structure indeed record actual horizon-
tal components and not rotated ones. The secondary mass of the
absorber can slide along a rail fixed to the top of the simple
building. x1 and x2 represent, respectively, absolute displacements
of the primary structure and of the added mass.

For the primary structure, we consider only the first mode. The
reduction of the model building to its first mode �mass M� is

reasonable since as underlined in Ref. �8�, only the first mode here
is responsible for energy pumping and other modes of the linear
structure are just simple damped oscillators. m denotes the mass
of the second added structure. In this experiment, the first modal
idealized viscous damping coefficient between the primary mass
and the support is c1 and between the primary mass and the sec-
ondary mass is c2. This model was designed, built, and tested at
the LGM �“Laboratoire Géo-Matériaux”� Laboratory �Ecole Na-
tionale des Travaux Publics de l’Etat�. As underlined in Ref. �12�
a cubic nonlinearity is made geometrically with two linear springs
�k and l are the stiffness and length of each linear spring�. How-
ever, when this spring is experimentally implemented, the linear
term appears since a small pre-stress force exists in the spring.
That is why even if the pre-stress force is kept to a minimum
linear coupling also appears.

An impulse is considered at the top of the primary structure.
Thus, the building and nonlinear absorber can be idealized by the
model displayed in Fig. 14.

The complete system is given by the following equations

M
d2x1

dt2 + �̃1
dx1

dt
+ �̃�dx1

dt
−

dx2

dt
� + k1x1 + D�x1 − x2� + k3�x1 − x2�3

= 0

m
d2x2

dt2 − �̃�dx1

dt
−

dx2

dt
� − D�x1 − x2� − k3�x1 − x2�3 = 0 �27�

where k3=k / l2. Equation �25� is similar to Eqs. �1� studied in the
previous parts with consideration of the “�” sign in front of the
terms ±D�x1−x2� and n=2. The experimental parameters are m
=0.121 kg, M =1.677, so �=0.07215. A modal analysis and ex-
perimental dynamic analysis of the structures give k1
=900.3 N m−1, �̃1=0.995 N s m−1, �̃=1.452 N s m−1, D
=30 N m−1, and k3=1.48.106 N m−3. The natural frequency of the
linear oscillator is 3.69 Hz. By considering an impulse at the first

Fig. 11 Energy pumping activation with damping

Fig. 12 Experimental system

Fig. 13 Linear identification

Fig. 14 Considered system with 2 DOF
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primary mass �x1�t=0�=x2�t=0�=dx2 /dt�t=0�=0,dx1 /dt�t=0�
=0.25� with the help of a hammer �the load has been applied to
the top floor of the model building�, accelerations of free oscilla-
tions are measured and plotted, as shown in Fig. 15. In this figure
energy pumping occurs. Indeed, there is attenuation of the vibra-
tions of the first mass �compared to the case with no coupling�
owing to the resonance of the nonlinear one when coupling is
considered.

The experimental results are in good agreement with the nu-
merical integration of System �1� with the previous parameters
�by taking only one mode into account in the numerical analysis�,
as shown in Fig. 15.

We can clearly see that during energy pumping phenomenon,
only the first mode is responsible for the total response. It can be
underlined that the other modes slightly change the response of x1
but, as underlined in Ref. �8�, only the first mode here is respon-
sible for energy pumping, and other modes of the linear structure
are only damped oscillators. Then, when energy pumping occurs,
it appears that a resonant capture occurs with the nonlinear oscil-
lator, as shown in Fig. 16. In this figure the instantaneous fre-
quency of experimental signal x2 has been calculated with the
classical Hilbert transform. To obtain x2, the experimental accel-
eration has been integrated twice with special filters.

In Fig. 16, the instantaneous frequency of x2 becomes identical
to the instantaneous frequency of the linear mode �3.69 Hz�: en-
ergy transfer occurs. After t=2 s, the nonlinear normal mode is
totally destroyed �brutal change of frequency of x2� resulting in
quasi-destruction of vibrations.

Then the experimental function H�t� can be calculated owing to
the experimental displacements x1 and x2 to see if there is good
agreement between the analytical expression �13� and experimen-
tal results. Thus experimental, analytical, and numerical H�t� can
be compared, as shown in Fig. 17 where the values of the param-
eters are the same as previously.

Figure 17 shows that the experimental results confirm the ana-
lytical expression and numerical simulations since approximation
appears to be quite good. Moreover, as shown in Fig. 17, solutions

10�t� and 
20�t�, which had been introduced to obtain analytical
expression �13�, are verified experimentally.

4 Conclusion
In the present study, an analytical description of pumping pro-

cess has been achieved. This analytical description turns out to be

Fig. 15 Comparison of experimental and numerical results

Fig. 16 Resonance capture phenomenon
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efficient for various types of energetic sinks. In spite of similar
topological structure, the “optimal” amplitude-phase structures for
various types of sink demonstrate significant differences. It must
be underlined that design of desirable amplitude–phase curves en-
ables to provide the optimal sink parameters. Then, as the analyti-
cal expression seems to be quite good when energy pumping oc-
curs, it is possible to analyze the influence of parameters on
efficiency of energy pumping. The aim is to optimize the param-
eters to obtain the best efficiency. Parameters of the linear primary
structure are often given. The aim is to design parameters of the
nonlinear added structure to obtain the best attenuation of vibra-
tions of the primary structure. That is why the role of parameters
can be analyzed. Since H�t� represents the energy it is possible to
observe and analyze the behavior of H�t� if parameters change. In
the pumping region analytical results are in very good accordance
with the data of numerical simulation �contrary to other types of
motion�. So, such a coincidence may be considered as a reliable

sign of closeness to optimal design. Moreover, computer simula-
tion has confirmed the analytical predictions which have been
obtained. Experimental verification has confirmed the analytical
expression with good accuracy.
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Vibration Characteristics of
Multiwalled Carbon Nanotubes
Embedded in Elastic Media by a
Nonlocal Elastic Shell Model
In this paper, the vibrational behavior of the multiwalled carbon nanotubes (MWCNTs)
embedded in elastic media is investigated by a nonlocal shell model. The nonlocal shell
model is formulated by considering the small length scales effects, the interaction of van
der Waals forces between two adjacent tubes and the reaction from the surrounding
media, and a set of governing equations of motion for the MWCNTs are accordingly
derived. In contrast to the beam models in the literature, which would only predict the
resonant frequencies of bending vibrational modes by taking the MWCNT as a whole
beam, the current shell model can find the resonant frequencies of three modes being
classified as radial, axial, and circumferential for each nanotube of a MWCNT. Big
influences from the small length scales and the van der Waals’ forces are observed.
Among these, noteworthy is the reduction in the radial frequencies due to the van der
Waals’ force interaction between two adjacent nanotubes. The numerical results also
show that when the spring constant k0 of the surrounding elastic medium reaches a
certain value, the lowest resonant frequency of the double walled carbon nanotube drops
dramatically. �DOI: 10.1115/1.2722305�

Keywords: vibration, multiwalled, carbon nanotubes, nonlocal shell, small length scale,
van der Waals, resonant frequencies

1 Introduction
Carbon nanotubes �1�, cylindrical-shaped tubes of seamless

graphite with extraordinary electrical and mechanical properties
�2–8� potentially have remarkable applications for novel materials
or structures such as carbon-nanotube-reinforced composites
�9,10� or as individual elements of nanometer-scale devices and
sensors �11–13�, and have attracted considerable attention world-
wide �14–22�. Usually, the properties of carbon nanotubes are
evaluated via experiments �2,8� or atomistic and molecular dy-
namics simulations �14,15�. As has been pointed out in the litera-
ture, these experiments are extremely difficult to conduct and con-
trol and the molecular dynamics simulations are very time-
consuming for large systems �16,17� because of the involvement
of internal nanolength scales. Therefore, many authors have made
great efforts to extend the classical continuum mechanics to large-
sized atomistic systems. Such kind of models can yield reasonable
results when the nanotubes are large enough to be viewed as a
homogenized material system �17,18�. However, the size of a
nanotube is usually very small, maybe a few atoms in diameter,
hence it may not be viewed as a continuum medium. Therefore,
the small-scale may call the direct application of the classical
continuum mechanics model into question �17�. Having realized
the limitations of classical continuum models in the study of nano-
technology, some researchers started to use a nonlocal elastic
model in their studies �17,18,21,22�. This nonlocal elastic model
cannot only include the merits of the classical continuum model
but also take the internal small-length scale into account.

In the classical �local� theory of elasticity, the stress at a refer-
ence point x= �x1 ,x2 ,x3� can be uniquely determined by the strains
at that point. However, the nonlocal elasticity �23–25� postulates

that the stress at a reference point x in a body not only depends on
the strains at x but also depends on the strains of all other points
x within the body considered. The stress-strain relations can be
written as �ij�x�=�v���x�−x� ,��cijkl�kl�x��dv�x��, where ���x�
−x� ,�� is the nonlocal moduli; �=e0a / l with a an internal charac-
teristic length �e.g., lattice parameter, granular distance�, l is an
external characteristic length �e.g., crack length, wavelength�, and
e0 is a constant appropriate to each material; cijkl is the elastic
moduli tensor. For two-dimensional nonlocal elasticity, there ex-
ists a differential form for the stress-strain relation,

�1 − �2l2�2��ij = cijkl�kl �1�

where the operator �2 is the Laplacian operator and has the form
��2 /x1

2�+ ��2 /x2
2� in a rectangular coordinate system. Notice that in

the nonlocal elasticity the effect of small length scale is consid-
ered by incorporating the internal parameter length into the con-
stitutive equation. One may also see that when the internal char-
acteristic length a is neglected, i.e., the particles of a medium are
considered to be continuously distributed, then �=0, and Eq. �1�
reduces to the constitutive equation of classical elasticity. Also, it
should be noted that, through Eq. �1�, the l is cancelled from the
rest of the analysis, leaving a and e0 as the internal characteristic
constants.

The vibration of nanotubes is a important subject in the study of
nanotechnology since it relates to the electronic and optical prop-
erties of MWCNT �26–28�. However, the models in the literature
to-date have been exclusively based on beam theory such as these
referring to thermal vibration and resonant frequencies
�2,8,19,28�. But the topological structure of a nanotube can be
viewed as a cylindrical shell, therefore when the multiwalled
nanotubes vibrate, not one but three resonant frequencies �radial,
axial, and circumferential� can be activated for each nanotube of
the multiwalled carbon-nanotube assembly. Since the nanotubes
of a MWCNT are coupled via the van der Waals’ forces, these
three resonant frequencies of each of the nanotubes may be dif-
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ferent from the ones predicted based on isolated nanotubes. The
differences in resonant frequencies among the nanotubes of a
MWCNT can further affect the electronic and optical properties of
the nanostructure. Therefore, the study of the vibration of the
MWCNT from a shell-type topological viewpoint has technologi-
cal significance and in the current research, the vibration of a
MWCNT is analyzed by a nonlocal elastic shell model.

We note again that although the internal characteristic length, a,
may be on the same scale order as the C–C bond length, this does
not mean that the nonlocal elastic theory follows each atom. This
important internal characteristic parameter, a, enters into the con-
stitutive relations to reflect the effects of the discrete character
�23–25� of the nanostructures when extending the continuum
theory to deal with such materials. As has been shown in the
literature, experimental and molecular-dynamics simulation meth-
ods are often used in most of the studies in understanding the
material properties and applications of carbon nanotubes. How-
ever, the experiments at the nano-scale are often hard to control
and the simulations by molecular-dynamics are difficult to accu-
rately formulate and quite expensive for large-scale atomic sys-
tems. Therefore, researchers have attempted to expand the classi-
cal continuum mechanics approach to the atomic or molecular-
based discrete systems. The classical continuum models are
efficient and accurate in computation for a material system in
large length scales. But the length scales at nanometers such as in
carbon nanotubes are not big enough to homogenize the discrete
structure into a continuum. But by using the nonlocal theory, one
would harvest the efficiency of classical continuum models and
take the nanoscale effects into account at the same time, thus
obtaining a satisfactory approximation �24,17,18�, etc. These are
the advantages of the current theory when comparing with mo-
lecular mechanics.

Therefore, in this paper, a nonlocal multiple shell model is de-
veloped to investigate the vibration characteristics of multiwalled
carbon nanotubes. In this model, not only the terms concerning
the van der Waals forces between adjacent nanotubes are incorpo-
rated into the Donnell shell model, but also the full nonlocal con-
stitutive relationship is adopted in the derivation of the formulas.
Therefore, this model includes both the interactions from the van
der Waals forces and the effects from the internal small scales of
the nanodevices. Compared with some nonlocal models in the
literature for nanotubes subjected to mechanical loading, our
model is a comprehensive nonlocal elastic model in the sense that
no approximation has been made in the use of the nonlocal elastic
constitutive equations and each tube is treated as a shell, not as a
one-dimensional column. The work presented in this paper is or-
ganized as follows: in Sec. 2 we present the development of a
nonlocal elastic shell model for the motion of multiwalled nano-
tubes; in Sec. 3 we present the analysis for the vibration of
DWCNTs under simply-supported end boundary conditions and
the derivation of the characteristic equation for the natural fre-
quencies; in Sec. 4 we present numerical results and associated
discussions on the vibration behavior of double-walled carbon
nanotubes embedded in an elastic medium; finally, conclusions
are given in Sec. 5.

2 The Nonlocal Elastic Shell Model of Multiwalled
Carbon Nanotubes

Let x, �, z be the axial, circumferential, and radial coordinates
of the nanotube �Fig. 1�, respectively. In terms of the the axial,
circumferential, and radial displacements of mid-surface, u, v, w,
respectively, the strains and displacements of a nanotube have the
following relations:

�xx = u,x − z�x ��� =
1

R
v,� +

w

R
− z��

�x�
=

1

R
u,� + v,x − 2z�x� �2�

where R is the mid-surface radius; �x, ��, and �x� are curvatures;
the comma denotes differentiation with respect to the correspond-
ing coordinates. We would like to emphasize that our work is a
shell theory and not a 3D elasticity solution. Therefore, although
three coordinates x, �, and z are involved in Eq. �2�, only two
variables x and � enter into the operators and the problem be-
comes a 2D problem. Similar handling of the z-direction effects
can be also found in Refs. �17,18�. Hence, this problem becomes
a 2D problem and the nonlocal theory is then applied onto this 2D
problem.

From Eq. �1�, the nonlocal stress-strain relations are written as

�1 − � 2l2�2��xx =
E

1 − �2 ��xx + ����� �3a�

�1 − � 2l2�2���� =
E

1 − �2 ���� + ��xx� �3b�

�1 − � 2l2�2��x� =
E

1 + �
�x� �3c�

in which �2= ��2 /�x2�+ �1/R2���2 /��2�, and E, �, are the elastic
modulus and Poisson’s ratio, respectively.

From Eqs. �2� and �3�, one can, respectively, write the resultant
forces

�1 − � 2l2�2�Nx = K�u,x +
�

R
v,�

− �
w

R
� �4a�

�1 − � 2l2�2�N� = K��u,x +
1

R
v,�

−
w

R
� �4b�

�1 − � 2l2�2�Nx� =
1 − �

2
K� 1

R
u,�

+ v,x� �4c�

and resultant moments,

�1 − � 2l2�2�Mx = D��x + ���� �5a�

�1 − � 2l2�2�M� = D��� + ��x� �5b�

Fig. 1 A shell model of multiwalled nanotubes in an elastic
medium
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�1 − � 2l2�2�Mx� = �1 − ��D�x� �5c�

where h is the thickness of the nanotube, K=Eh / �1−� 2�, and D
=Eh3 /12�1−� 2�.

The governing equations in terms of resultant forces and mo-
ments may read as follows:

RNx,x + N�x,� − 	Rhü = 0 �6a�

N�,� + RN�x,x + Q� − 	Rhv̈ = 0 �6b�

RQx,x + Q�,� + N� + Rp�x,�� − 	Rhẅ = 0 �6c�

RMx,x + Mx�,� − RQx = 0 �6d�

RMx�,x − M�,� + RQ� = 0 �6e�
If the Donnell assumptions are adopted, then substitution of

Eqs. �4� and �5� into Eq. �6� leads to the following nonlocal elastic
shell model of a nanotube:

L1�u,v,w� = �1 − � 2l2�2�	̂ü �7a�

L2�u,v,w� = �1 − � 2l2�2�	̂v̈ �7b�

L3�u,v,w� = �1 − � 2l2�2��	̂ẅ − p�x,��/K� �7c�

where, k2=h2 /12R2, 	̂=	�1−� 2� /E, and the operators
Lj�u ,v ,w��j=1,2 ,3� are defined as

L1�u,v,w� = u,xx +
1 − �

2R2 u,�� +
1 + �

2R
v,x� −

�

R
w,x �8a�

L2�u,v,w� =
1 + �

2R
u,x� +

1 − �

2
v,xx +

1

R2v,�� −
1

R2w,� �8b�

L3�u,v,w� =
�

R
u,x +

1

R2v,� −
1

R2w − k2R2�4w �8c�

The set of governing Eqs. �7� and �8� forms the basis of the
nonlocal elastic shell model for the study of the vibration behavior
of nanotubes. It is worthy to mention that the applied loading
p�x ,�� plays a very important role in the study of multiwalled
nanotubes. This loading usually simulates the van der Waals in-
teractions between two adjacent nanotubes. One may readily see
that the effects of the internal characteristic parameter are in-
cluded in this model as reflected by the terms in the right-hand
side of Eqs. �7�. When the parameter � is zero, this model returns
to the classical elastic shell model.

Applying Eq. �7� to each of the multiwalled nanotubes, we have
for the first nanotube,

L1�u1,v1,w1� = �1 − � 2l2�2�	̂ü1 �9a�

L2�u1,v1,w1� = �1 − � 2l2�2�	̂v̈1 �9b�

L3�u1,v1,w1� = �1 − � 2l2�2�	̂ẅ1 − �1 − �2l2�2�
1

K
p12�x,��

�9c�

and for the jth wall, j=2, . . . , �N−1�,

L1�uj,v j,wj� = �1 − � 2l2�2�	̂üj �9d�

L2�uj,v j,wj� = �1 − � 2l2�2�	̂v̈ j �9e�

L3�uj,v j,wj� = �1 − � 2l2�2�	̂ẅj

− �1 − � 2l2�2�
1

K
	pj�j+1��x,�� −

Rj−1

Rj
p�j−1�j�x,��


�9f�

and for the Nth wall,

L1�uN,vN,wN� = �1 − � 2l2�2�	̂üN �9g�

L2�uN,vN,wN� = �1 − � 2l2�2�	̂v̈N �9h�

L3�uN,vN,wN� = �1 − �2l2�2�	̂ẅN

− �1 − � 2l2�2�
1

K
	pN�x,�� −

RN−1

RN
p�N−1�N�x,��


�9i�
where

pj�j+1��x,�� = c�wj+1�x,�� − wj�x,��� j = 1,2, . . . ,�N − 1�

�10a�

pN�x,�� = − k0wN�x,�� �10b�

in which, pj�j+1��x ,s� is the interaction pressure exerted on the
tube j from the tube j+1, while p�j+1�j�x ,s� is the interaction pres-
sure exerted on the tube j+1 from the tube j; they have the fol-
lowing relationship:

Rjpj�j+1��x,�� = − Rj+1p�j+1�j�x,�� j = 1,2, . . . ,N − 1; �11�

and pN is the interaction pressure between the outmost tube and
the surrounding elastic medium; k0 is the spring constant of the
surrounding elastic medium; and c is the van der Waals interaction
coefficient and can be estimated as �22�

c =
200

0.16
d2 erg/cm2 d = 0.142 nm �12�

where d is a parameter related to the C–C bond length. One may
realize that here we are dealing with a linear dynamic problem, so
the van der Waals interaction and interaction between the outer
tube and elastic surrounding media can be estimated from a linear
function of the deflection jump at two points, and the interactions
in the tangential direction can be neglected, as discussed in Refs.
�18,19�. But for a nonlinear dynamic behavior, the nonlinear
higher order terms and effects from the tangential force should be
included in these interaction expressions.

3 Double-Walled Carbon Nanotubes
Double-walled carbon nanotubes �DWCNTs� are considered in

this section to demonstrate how the nonlocal model can be used to
study the dynamics of multiwalled nanotubes. For the tubes, a
solution must be periodic in � �=s /R�. Therefore, we can set for
j=1,2:

uj�x,�,t� = �
n

ujn�x,t�cos n
� �13a�

v j�x,�,t� = �
n

v jn�x,t�sin n
� �13b�

wj�x,�,t� = �
n

wjn�x,t�cos n
� �13c�

Substitution of Eq. �13� into �9� yields the following differential
equations with respect to the variables x and t, for j=1,2,

L̃1�ujn,v jn,wjn� = 	1 + � 2l2�n


Rj
�2
	̂üjn − � 2l2	̂üjn� �14a�
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L̃2�ujn,v jn,wjn� = 	1 + � 2l2�n


Rj
�2
	̂v̈ jn − � 2l2	̂v̈ jn� �14b�

L̃3�ujn,v jn,wjn� = 	1 + � 2l2�n


Rj
�2
	̂ẅjn − � 2l2	̂ẅjn� + Fj�w1n,w2n�

�14c�

where

F1�w1n,w2n� =
c� 2l2

K
�w2n� − w1n� � −

c

K
	1 + � 2l2�n


R1
�2
�w2n − w1n�

�14d�

F2�w1n,w2n� =
� 2l2

K
	k0w2n� + c

R1

R2
�w2n� − w1n� �
 −

1

K
	1

+ � 2l2�n


R2
�2
	k0w2n + c

R1

R2
�w2n − w1n�


�14e�

where, the superscript � denotes differentiation with respect to the

variable x and the operators L̃1 L̃2 and L̃3 are defined as

L̃1�ujn,v jn,wjn� = ujn� −
1 − �

2
�n


Rj
�2

ujn +
1 + �

2
�n


Rj
�v jn� −

�

Rj
wjn�

�15a�

L̃2�ujn,v jn,wjn� = −
1 + �

2
�n


Rj
�ujn� +

1 − �

2
v jn� − �n


Rj
�2

v jn

+
1

Rjn
�n


Rj
�wjn �15b�

L̃3�ujn,v jn,wjn� =
�

R
ujn� +

1

Rj
�n


Rj
�v jn − kj

2Rj
2�wjn�� − 2�n


Rj
�2

wjn�

+ 	�n


Rj
�4

+
1

kj
2Rj

4
wjn �15c�

3.1 Solution for Simply Supported Tow Ends. For a simple
edge-supported DWCNT, the boundary conditions read

v = w = Nx = Mx = 0 at x = 0 and x = L �16�

or, by using �4�1 and �5�1,

v = w = 0 u,x + �v,s + �
w

R
= 0 w,xx + �w,ss −

�

R
v,s = 0 at x = 0,L

�17�
A solution satisfying Eqs. �17� may be expressed as

ujn = A1
j cos �x cos �t v jn = A2

j sin �x cos �t wjn

= A3
j sin �x cos �t j = 1,2 �18�

in which �=m
 /L.
By substituting Eqs. �18� into the set of Eqs. �14�, we obtain a

system of six algebraic equations for the unknown constants Ai
j

�i=1,2 ,3 , j=1,2�. For nontrivial values of Ai
j, the determinant of

the algebraic equations must vanish, which leads to the following
characteristic equation for a double-walled carbon nanotubes:

det�
1	̂�2 − a11

1 + �

2
n
�̂1 − ��̂1 0 0 0

1 + �

2
n
�̂1 1	̂�2 − a22 n
 0 0 0

− ��̂1 n
 1	̂�2 − a33 0 0 −
c

K
1

0 0 0 2	̂�2 − a44

1 + �

2
n
�̂2 − ��̂2

0 0 0
1 + �

2
n
�̂2 2	̂�2 − a55 n


0 0 −
k0 + cR1/R2

K
2 − ��̂2 n
 2	̂�2 − a66

� = 0 �19�

where

�̂i = m

Ri

L
i = Ri

2 + �2l2��̂i
2 + �n
�2� i = 1,2 �20a�

a11 = �̂1
2 +

1 − �

2
�n
�2 a22 =

1 − �

2
�̂1

2 + �n
�2 �20b�

a33 = 1 + k1
2��̂1

2 + �n
�2�2 −
c

K
1 a44 = �̂2

2 +
1 − �

2
�n
�2

�20c�

a55 =
1 − �

2
�̂2

2 + �n
�2 a66 = 1 + k2
2��̂2

2 + �n
�2�2 −
k0 + cR1/R2

K
2

�20d�

The characteristic equation for a multiwalled carbon nanotube
�N�2� can be formulated by employing an analogous procedure.
As far as a single-walled carbon nanotube, the corresponding so-
lution is presented in the Appendix.

It is evident that Eq. �19� represents a sixth order frequency
equation for the unknown �2, and that it has six positive, real
roots for a given DWCNT. Hence, each tube of the tow tubes of a
DWCNT may vibrate in three different vibrational modes, namely,
radial �or bending�, longitudinal �or axial�, or circumferential �or
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torsional�. The two lowest eigenfrequencies may primarily relate
to the radial motions of the inner and outer tube, respectively.
Because of the van der Waals’ interaction between the inner and
outer tubes, one can expect that the values of the frequencies
pertaining to each tube would be different than the ones corre-
sponding to a single-walled carbon nanotube with the same geo-
metric sizes and boundary conditions, as illustrated in Table 1.
More details will be discussed in the next section.

4 Numerical Results and Discussions
Results of the resonant frequencies of carbon nanotubes �Fig. 1�

are presented in this section. The influence of the internal charac-
teristic parameter on the vibration of nanotubes is also demon-
strated. Unless otherwise specified, the following properties of the
carbon nanotubes are used: the length of a C–C bond is a
=1.42 nm �18�; E=742 GPa, �=0.17 �9�; the density 	
=2150 kg/m−3 �2�; the radius of the inner carbon tube R1=R1

o

=0.35 nm and the radius of the outer carbon tube R2=R2
o

=0.79 nm, the thickness of each nanotube h=0.495�R2−R1�, the
length of the nanotubes L=10�R2; the van der Waals interaction
coefficient c can be obtained from Eq. �12�; the spring constant
from the surrounding elastic medium k0=0.01�c. Also in the
following discussion, �I and �VI are defined, respectively, as the
lowest and highest frequencies, normalized by the corresponding
values with no consideration of the inner characteristic parameter
a.

Listed in Table 1 are the natural frequencies of two SWCNTs
and one MWCNT for both ends simply supported. Each of the
SWCNT has three natural frequencies, the lowest one correspond-
ing to radial vibration. There are six frequencies for the MWCNT,
three for the inner tube vibration and the other three for the outer
tube. All values in Table 1 are normalized with the lowest value,
�11 of the SWCNT with R=0.35 nm. Geometrically, the param-
eters of the inner tube of the MWCNT are exactly the same as
these of the SWCNT with R=0.35 nm while those of the outer
tube of the MWCNT correspond to a SWCNT with R=0.79 nm.
But these two nanotubes in the MWCNT are coupled via the van
der Waals’ force. The coupling interaction definitely has an influ-
ence on the vibration of the MWCNT, as reflected in Table 1, the
radial natural frequency of the outer tube of the MWCNT reduces
55%, from 0.9258549 to 0.41628983. One can also see that varia-
tions of natural frequencies corresponding to the axial and the
circumferential vibration exist but not too much because the van
der Waals interactions are proportional to the displacement differ-
ences in the radial direction. The lowest is usually of primary
interest in vibration, therefore, it can be concluded that the van der
Waals interaction has a significant influence on the vibration
analysis of multiwalled carbon nanotubes. This observation would
also suggest that if a model for the vibration of MWCNTs ne-
glects, or inadequately handles the van de Waals interaction be-
tween two adjacent nanotubes, it would significantly compromise
the accuracy in the predictions of MWCNT properties.

The variation of frequencies with the ratio L /R2 is shown in
Fig. 2 and can be used to justify the current nonlocal shell model
for the study of nanodynamics. One can observe that when the
ratio L /R2 is larger than 10, the results of �I and �VI are conver-
gent. This observation is in good agreement with the classical thin
shell theory. Of course, for the study of a nanostructure with the

geometric parameter L /R2�10, the nonlocal thick shell theory
may be needed, and can be derived by a procedure similar to the
one employed in the current paper.

Figure 3 shows the results of the variation of frequencies with
the ratio h / �R2−R1�, i.e., the ratio of thickness over the distance in
radial direction between the two nanotubes. One can see that the
value of �VI, corresponding to the axial frequency of the inner
nanotubes is not affected by the varying value of h / �R2−R1� and
the radial frequency of the outer nanotube, �I does not change
either when the ratio h / �R2−R1� reaches a certain value such as
0.3 in the current example.

However, the results of the radial natural frequency �I exhibit

Table 1 Comparison of frequencies for a DWCNT and the corresponding to each of the nano-
tubes SWCNT � /�10 „m=n=1; L=10R2…

SWCNTs 1.0000000, 1.3358769, 2.2041474
R=0.35 nm

0.9258549, 1.2368282, 2.0407208
R=0.79 nm

DWCNT 0.99834007, 1.3358729, 2.2040182
�inner tube R1=0.35 nm�

0.41628983, 1.243199, 2.0236288
�outer tube R2=0.79 nm�

Fig. 2 Variation of frequencies with the aspect ratio, L /R2

Fig. 3 Variation of frequencies with the ratio of thickness over
distance between the nanotubes, h / „R2−R1…
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an oscillation for a value of the ratio h / �R2−R1� of 0.1. One can
further observe that at this point the scale of the nanotube thick-
ness �around 1.3�10−11 m� falls into the range of molecular or-
der. But beyond this point, the thickness of the tube enters into the
range of nanoscale and the results are shown to be convergent.
Therefore, this figure demonstrates that the current shell model
would give a reasonable prediction in the study of nanotubes.

The curves in Fig. 4 are used to show the influences of the inner
characteristic parameter a and the material constant e0 on the
natural frequencies of this simply edge-supported MWCNT. Two
interesting phenomena can be observed in this figure. First, both
the �I and the �VI decrease as the ae0 increases. The increase of
ae0 means that the length of the C–C bond increases for a given
nanomedium. Large values of the length of the C–C bond imply a
big discontinuity. This observation suggests that a big error could
be created by directly applying a classical continuum elastic
model in nanostructures. Second, both the �I and the �VI in-
crease as the geometric sizes of the MWCNT increase. Indeed, the
�I and �VI almost reach 1 when the sizes of MWCNT reach a
certain value, for example R1�0.5�10−8 m, R2�1.2�10−8 m,
and L�1.2�10−7 m, a range beyond the nanometer order �1
�10−9 m�L�1�10−8 m �17��. This observation means that the
classical continuum elastic model can give a good prediction if the
geometric size of the nanotubes is large enough that the whole
structure can be homogenized as a continuum. These two obser-
vations conclude that in the range of nanometer order 1
�10−9 m�L�1�10−8 m, the inner characteristic parameter a,
though small, has a significant effect on the natural frequencies
predicted by the elastic model and cannot be ignored in the study
of nanostructural behavior.

Presented in Fig. 5 are the variations of frequencies �I and �VI
versus the modal numbers �m ,n�. Figures 5�a� and 5�b� are for the
case of m=1 and varying n, while Figs. 5�c� and 5�d� are for n
=1 and varying m. Here, the value of m refers to the axial modal
number, and n to the circumferential modal number. One can see
that the values of �I and �VI are more sensitive to n than to m.
Since the beam model theory does not take the circumferential
mode into account, this observation suggests that the beam model
for the study of the dynamics of nanotubes may be inadequate and
may not yield proper results.

Figure 6 shows the effects of the surrounding elastic medium
on the frequencies of the MWCNTs. It can be seen that the values
of �VI for each mode �for example for n=1, m=1–5� in the axial
direction of vibration, almost do not vary with the variation of the
elastic constant log�k0 /c� of the medium �Fig. 6�b��. But the val-

ues of �I corresponding to the basic radial vibration mode �m
=1,n=1� and higher modes in the axial direction such as �m
=2, . . . ,5 ,n=1� of the outer nanotube decrease as the value of
log�k0 /c� increases, especially after log�k0 /c��1 �Fig. 6�a��. This
observation is in good agreement with the results obtained by a
beam model simulation �19�. The elastic constant effects on the
higher modes in the circumferential direction such as n=2 are
shown in Fig. 7, in which a tendency similar to the one in Fig. 6
can also been found. The variation of frequencies for higher
modes of n�2 can only be predicted by the current shell model.
Combining the results in Figs. 6 and 7, we can see that for each
higher mode in the radial direction, such as m=1, n=1, 2, �I
decreases while �VI does not change as the log�k0 /c� increases. It
is obvious that the bigger the log�ko /c� value, the stiffer the sur-
rounding media. As a limiting case, if the surrounding elastic me-
dia is rigid, then no relative motions are possible for the outer
nanotube. Therefore, the predictions of a decrease in �I in Figs. 6
and 7 are expected.

Fig. 4 The influence of the internal characteristic parameter,
aeo of the DWCNTs

Fig. 5 The variation of the frequencies versus „m ,n…

Fig. 6 The influence on the frequencies of the stiffness of the
surrounding medium, k0 versus „m ,n=1…
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5 Conclusions
In the present paper, the dynamic behavior of multiwalled car-

bon nanotubes embedded in elastic media is studied by a nonlocal
shell model. In this model, small nanoscale parameters and the
van de Waals’ force between two adjacent nanotubes are included.
A closed-form solution for the simply supported case is presented.
The influences of the small internal parameters of the carbon
nanotubes on the natural frequencies are investigated. The effects
of the elastic constant of the surrounding medium are also ad-
dressed. Compared to a beam model, this shell model has the
ability to capture the higher vibration modes in the radial direc-
tion. Moreover, the validation of this model is discussed. The
observations in this study suggest the following specific conclu-
sions: �1� The small internal parameters of the nanotubes have a
significant influence on the natural frequencies of the MWCNTs
when the structures are in the order of nanometers. These influ-
ences diminish as the geometric sizes of the structures increase.
When the order of the geometric size of the structures is beyond
the nanometer range, the influence from the small scale param-
eters could be neglected. �2� The van der Waals’ interaction has a
significant effect on the radial modal natural frequencies of the
outer tubes of the MWCNT. Since this radial frequency is of pri-
mary interest in the vibration study of a structure, the van der
Waals’ force should not neglected in the study of nanodynamics.
�3� When the relative stiffness, the ratio of the elastic modulus k0
of the surrounding media and the van der Waals interaction coef-
ficient c increases, the radial frequencies decrease significantly.
This result can provide a guidance for the design of nanocompos-
ites in order to obtain a desirable vibration behavior.
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Appendix: A Single-Walled Carbon Nanotube
The solution for the vibration of a single-walled carbon nano-

tube �SWCNT�, simply supported at the ends, can be easily ob-
tained from the results in Sec. 3. The external force considered is
only the force from the surrounding elastic medium and it reads

p�x,�� = − k0w�x,�� �A1�
Following a similar procedure as in Sec. 2, the governing equa-

tions can be written as

L̃1�un,vn,wn� = 	1 + � 2l2�n


R
�2
	̂ün − � 2l2	̂ün� �A2a�

L̃2�un,vn,wn� = 	1 + � 2l2�n


R
�2
	̂v̈n − � 2l2	̂v̈n� �A2b�

L̃3�un,vn,wn� = 	1 + � 2l2�n


R
�2
	̂ẅn − � 2l2	̂wn� +

� 2l2

K
k0wn�

−
1

K
	1 + � 2l2�n


R
�2
k0wn �A2c�

The characteristic equation for natural frequencies of the
SWCNT can be according derived as

det�	̂�2 − a1

1 + �

2
n
�̂ − ��̂

1 + �

2
n
�̂ 	̂�2 − a2 n


− ��̂ n
 	̂�2 − a3

� = 0 �A3�

where

�̂ = m

R

L
 = R2 + � 2l2��̂2 + �n
�2� a1 = �̂2 +

1 − �

2
�n
�2

�A4a�

a2 =
1 − �

2
�̂2 + �n
�2 a3 = 1 + k2��̂2 + �n
�2�2 −

k0

K


�A4b�
This model is the accurate solution for single-walled carbon nano-
tube reinforced composites.
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Saint-Venant’s Problem for
Homogeneous Piezoelectric
Beams
This paper is devoted to the linear analysis of a slender homogeneous piezoelectric beam
that undergoes tip loading. The solution of the Saint-Venant’s problem presented in this
paper generalizes the known solution for a homogeneous elastic beam. The analytical
approach in this study is based on the Saint-Venant’s semi-inverse method generalized to
electroelasticity, where the stress, strain, and (electrical) displacement components are
presented as a set of initially assumed expressions that contain tip parameters, six un-
known coefficients, and three pairs of auxiliary (torsion/bending) functions in two vari-
ables. These pairs of functions satisfy the so-called coupled Neumann problem (CNP) in
the cross-sectional domain. In the limit “elastic” case the CNP transforms to the Neu-
mann problem, for a beam made of a poled piezoceramics the CNP is decomposed into
two Neumann problems. The paper develops concepts of the torsion/bending functions,
the torsional rigidity and shear center, the tip coupling matrix for a piezoelectric beam.
Examples of exact and numerical solutions for elliptical and rectangular beams are
presented. �DOI: 10.1115/1.2722315�

1 Introduction
This paper develops the linear analysis of homogeneous piezo-

electric beams that undergo tip loading �i.e., the Saint-Venant’s
problem, see �1–5��. The analytical approach in this work is based
on the Saint-Venant’s principle and semi-inverse method of solu-
tion, see �6–12�, etc., generalized to electroelasticity, see �13–15�.
The initially assumed expressions for the stress, strain, and �elec-
trical� displacement components �“solution hypothesis”� contain
twelve integral tip parameters, six unknown coefficients, and three
pairs of torsion/bending functions in two variables �accordingly to
two basic cases: actuating response or sensor response�.

The Solution of the “elastic” Saint-Venant’s problem includes
three auxiliary �torsion/bending� functions satisfying the Neu-
mann problem in a cross-sectional domain, see �8�, pp. 263–264.
Analytical solutions of the “piezoelectric” Saint-Venant’s problem
presented in the paper generalizes the solution for an elastic beam.
Namely, the displacement and strain expressions coincide with
those of the “elastic” solution, but involved three pairs of auxil-
iary �torsion/bending� functions satisfying more complicated so-
called coupled Neumann problems �CNP�. In the limit case the
CNP transforms to the “elastic” Neumann problem. For a beam
made of poled piezoceramics the CNP is decomposed into two
Neumann problems.

The piezoelectric tip loads are divided into two dual groups
�each of them contains six tip forces and tip moments� related by
the tip coupling matrix.

The present study develops concepts of the torsion/bending
functions, torsional rigidity, and the shear center for a monoclinic
piezoelectric beam. The entire analytical derivation and solution
expressions are symbolically proved by suitable computerized
codes, see also �9�.

The structure of the work is as follows: Sec. 2 reviews the basic
definitions and equations for piezoelectric beam derivation. Sec-
tion 3 surveys the matrix presentation of anisotropic piezoelectric
materials properties: monoclinic, orthotropic, and transtropic. Sec-
tion 4 introduces a two-dimensional boundary value problem,
CNP, playing a central role in the work. Section 5 presents the

superposition of all solution components and calculates the six
parameters to satisfy the tip conditions. By employing the govern-
ing equations �equilibrium, compatibility, existence conditions,
etc.�, the field equations and the boundary conditions for the un-
known six auxiliary functions are established, and the involved
functions are determined �and hence, the validity of the preas-
sumed expressions is proved�. Section 6 contains illustrative ex-
amples of exact solutions for elliptical monoclinic beams and nu-
merical solutions for piezoelectric beams made of transtropic
material.

2 Basic Equations for Piezoelectric Beams
To clarify the derivation, the present analysis is applied to an-

isotropic piezoelectric beams of homogeneous and simply con-
nected cross sections.

Following Saint-Venant, we assume that the principal effects on
the elastic field are caused by the force resultant at the beam’s
ends �Saint-Venant Principle�, while the exact dissipation of trac-
tions at the beam’s ends are of secondary importance. Hence the
tip loads are introduced in an integral manner, and likewise the
root boundary conditions. The discussion presented in what fol-
lows is adequate mainly for small and finite deformations.

A model of a slender, uniform cylindrical beam with a homo-
geneous simply connected cross section �, its circumference ��,
and the circumferential arc-length coordinate, s, is shown in Figs.
1 and 2. The angle cosines between the normal to �� and the x-,
y-axes are cos�n̄ ,x�=dx /dn, cos�n̄ ,y�=dy /dn, and the following
identity holds: cos�n̄ ,x�2+cos�n̄ ,y�2=1.

We shall assume that the origin of the coordinate system is
placed at the center of the cross-section area and that the x- and
y-axes are directed along the principal axes of inertia of the cross
section. The above may be written together with the definition of
the cross-section area, S�, and the cross-sectional moments of
inertia Iy and Ix about the x- and y-axes, respectively, as

� �
�

�1,x,y,x2,xy,y2� = �S�,0,0,Iy,0,Ix� �1�

For Cartesian coordinates x, y, z we denote ui the displacement
components, �ij and �ij are the strain and stress tensors compo-
nents. We also use engineering notation for the stress and strain
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tensors �= ��1 ,�2 ,�3 ,�4 ,�5 ,�6� and �= ��1 ,�2 ,�3 ,�4 ,�5 ,�6�,
and displacement vector u= �u1 ,u2 ,u3�= �u ,v ,w�. In the small de-
formation case, the strain tensor is defined by the Cauchy relations
2�ij =ui,j +uj,i.

One may first derive a separate analysis for a clamped-free
piezoelectric beam of the length l �with z-axis� for each of the tip
loads, and then summarize all tip effects. The collection of these
solutions is referred to as the solutions for the “Saint-Venant’s
problem.” It is shown that, the internal energy stored in the por-
tion of the bar which is beyond a distance z from the loaded end
decreases exponentially with the distance z �13�.

The most common version of integral clamping conditions that
will be denoted as “clamped-I,” or “engineering” clamping con-
ditions, is u0=v0=w0=u0,z=v0,z=�z0=0 at z=0. Yet, another pos-
sible version for such an integral approximation that will be de-
noted as “clamped-II” conditions, is u0=v0=w0=�x0=�y0=�z0
=0 at z=0. To study “sensor response” the beam is assumed to be
acted upon over the tip end cross-section, by three tip forces Px,
Py, Pz and three tip moments Mx, My, Mz in the coordinate direc-
tions, where

�Pz,Mx,− My,Px,Mz� =� �
�t

��z,y�z,x�z,�5,�4,x�4 − y�5�

�2�
To study “actuating response,” we define the piezoelectric tip
forces and the piezoelectric tip moments,

�P3
D,M1

D,− M2
D,P1

D,P2
D,M3

D� =� �
�t

�D3,yD3,xD3,D1,D2,xD2

− yD1� �3�
The two groups of tip parameters, see Eqs. �2� and �3�, are linearly
related by the tip coupling matrix that will be defined in what
follows.

The linear constitutive equations for a direct piezoelectric effect
�called piezoelectric stress equations� are

�ij = cijkl
e �kl − eijmEm �4a�

Di = eimn�mn + �ij
s Ej �4b�

where eimn=−einm, �ij
s =� ji

s , �see �16,7,17�, etc�. The behavior of
piezoelectric materials may be also governed by the converse pi-
ezoelectric effect

�ij = Cijkl
e �kl + dijmEm �5a�

Di = dimn�mn + �ij
TEj �5b�

Here E= �E1 ,E2 ,E3� is the electric field strength and D
= �D1 ,D2 ,D3� is the electric displacement, cijkl

e �Cijkl
e � is a stiffness

(compliance) tensor at constant electric field, �ij
s ��ij

T� is the per-
mittivity at constant strain (stress), eimn is a piezoelectric stress
constant. The third rank tensors dmij, emij may be simplified using
matrix notation to dij,eij �Voigt’s “piezoelectric constants and
moduli”�, the second rank tensors. The planar isotropy of poled
ceramics is expressed in their piezoelectric constants by the
equalities d32=d31 and d24=d15.

For a quasistatic case �and without the body-force components�
we obtain three equilibrium equations,

�x,x + �xy,y + �xz,z = 0 �6a�

�xy,x + �y,y + �yz,z = 0 �6b�

�xz,x + �yz,y + �z,z = 0 �6c�

Maxwell’s equations are reduced to the static dielectric state �7�

curl E = 0 ⇒ E = − grad � �7�

div D = D1,x + D2,y + D3,z = 0 �8�

where � is the electrical potential. A unique solution of PDE
�6a�–�6c� and �8� will be found if the initial and boundary condi-
tions of the problem are specified.

The boundary conditions for stress �without surface loads� and
electric displacement �the dielectric permittivity of the external
medium is much less than of the piezoelectric body� are �n=0 and
Dn=0 on ��, or, equivalently,

�x cos�n̄,x� + �xy cos�n̄,y� = 0 �9a�

�xy cos�n̄,x� + �y cos�n̄,y� = 0 �9b�

�xz cos�n̄,x� + �yz cos�n̄,y� = 0 �9c�

D1 cos�n̄,x� + D2 cos�n̄,y� = 0 �9d�

3 Matrix Presentation of Piezoelectric Materials
The independent constants characterizing the electrical and me-

chanical properties of a piezoelectric material may be consider-
able reduced in number if the symmetry of the material increased.

For the monoclinic type of elastic materials �denoted MON13z
�8�� the stiffness matrix A=ce and compliance matrix a=Ce

=A−1 are

A =�
A11 A12 A13 0 0 A16

A22 A23 0 0 A26

A33 0 0 A36

A44 A45 0

Sym. A55 0

A66

	

Fig. 1 Notation for a slender beam

Fig. 2 A cross section
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a =�
a11 a12 a13 0 0 a16

a22 a23 0 0 a26

a33 0 0 a36

a44 a45 0

Sym. a55 0

a66

	
and the constitutive properties �4a� and �4b� can be decomposed
into two subsystems

�
D1

D2

�4

�5

	 =�
�11

s �12
s e14 e15

�12
s �22

s e24 e25

− e14 − e24 A44 A45

− e15 − e25 A45 A55

	�
E1

E2

�4

�5

	
�

D3

�1

�2

�3

�6

	 =�
�33

s e31 e32 e33 e36

− e31 A11 A12 A13 A16

− e32 A12 A22 A23 A26

− e33 A13 A23 A33 A36

− e36 A16 A26 A36 A66

	�
E3

�1

�2

�3

�6

	
Since the e constants and clamped dielectric matrix �s are some-
times unavailable, they can be expressed in terms of piezoelectric
constants d �a second rank tensor� and a free dielectric matrix �T

as

e = d · A �s = �T − d · A · d* �10�

For the monoclinic system: Class 3, digonal polar, C2 �16�, the
matrices of piezoelectric constants and piezoelectric stress con-
stants have the form

d = � 0 0 0 d14 d15 0

0 0 0 d24 d25 0

d31 d32 d33 0 0 d36
	

e = � 0 0 0 e14 e15 0

0 0 0 e24 e25 0

e31 e32 e33 0 0 e36
	 �11�

and the clamped dielectric matrix has the form

�s = ��11
s �12

s 0

�12
s �22

s 0

0 0 �33
s 	 �12�

Beams of more general anisotropy have less practical use and will
not considered in this work.

A simpler class of materials known as orthotropic materials
�i.e., A45=A16=A26=A36=0�, is defined by nine independent
moduli only so-called engineering constants Eii, Gij, and �ij, as

a =�
1

E11
−

�21

E22
−

�31

E33
0 0 0

−
�12

E11

1

E22
−

�32

E33
0 0 0

−
�13

E11
−

�23

E22

1

E33
0 0 0

0 0 0
1

G23
0 0

0 0 0 0
1

G13
0

0 0 0 0 0
1

G12

	 �13�

For the orthotropic system: class 3, didigonal polar, C2v �16�, i.e.,
the piezoelectric constants and piezoelectric stress constants addi-
tionally to �11� satisfy d14=d25=d36=0, e14=e25=e36=0.

Tetragonal material denoted by TRG6z, may be defined by the
six independent parameters E, E�, G, G�, �, ��, so that E11=E22
=E, E33=E�, G23=G13=G�, G12=G, �12=�21=�, �13=�23
=��E /E��, �31=�32=��.

Many natural and manmade materials are classified as trans-
versely isotropic �transtropic for short�. The compliance matrix of
this transtropic material TI5z is identical to that of the tetragonal
material TRG6z, while in addition, a dependency of G on E and �
should be introduced G=E / �2�1+���⇔a66=2�a11−a12�. In this
case one may use the ditetragonal polar, C4v, type of material
�16�, i.e., �11� with additional restrictions d31=d32, d24=d15, e31
=e32, e24=e15, e14=e25=d14=d25=0. The clamped dielectric ma-
trix has the diagonal view, with �22

s =�11
s , �12

s =0. Among poled
piezoceramics examples of transtropic materials are ceramic B,
PZT-2, PZT-4, PZT-5A, PZT-5H, PZT-8, etc. Note that a poled
piezoelectric ceramic has only one type of piezoelectric matrix.

Example 1 (transtropic material). In examples of Sec. 4.2 we
deal with a beam, made of transtropic material �e.g., a poled pi-
ezoelectric ceramic PZT-5A� with characteristics, presented in ra-
tional numbers view E=100/1641·1012
0.061·1012, E�
=10/188·1012
0.174·1012, �=574/1641
0.35, ��=722/1880

3.84, G�=10/475·1012
0.021·1012, d31=−171·10−12, d33
=374·10−12, d15=584·10−12, �11

T =1730�0, �33
T =1700�0 where �0


885/100·10−12 F/m is the permittivity of vacuum. The system
of constitutive relations is decomposed into two subsystems

�
D1

D2

�4

�5

	 = 10−12�
8130 0 0 12.3

0 8130 12.3 0

0 − 12.3 0.021 0

− 12.3 0 0 0.021
	�

E1

E2

�4

�5

	
�

D3

�1

�2

�3

�6

	 = 10−12�
7312 − 5.34 − 5.34 15.8 0

5.34 .12 .075 .075 0

5.34 .075 .12 .075 0

− 15.8 .075 .075 .11 0

0 0 0 0 .026
	�

E3

�1

�2

�3

�6

	
4 A Coupled Neumann Problem

This section contains the formulation and investigation of a
two-dimensional boundary value problem that plays a central role
in the present study.

We shall first list the elliptical differential operators used in the
paper,

�3
�2� = a44

�2

�x2 − 2a45
�2

�x�y
+ a55

�2

�y2 �see �8�� �14a�

�e
�2� = e15

�2

�x2 + �e25 + e14�
�2

�x�y
+ e24

�2

�y2 �14b�

��
�2� = �11

s �2

�x2 + 2�12
s �2

�x�y
+ �22

s �2

�y2 �14c�

The ellipticity of these second order operators follows from the
inequalities a44a55−a45

2 	0, e15e24− 1
4 �e25+e14�2	0, �11

s �22
s −�12

2

	0. The boundary differential operators used in what follows are

D1
n = �a44�x − a45�y�cos�n̄,x� + �a55�y − a45�x�cos�n̄,y�

D�
n = ��11

s �x + �12
s �y�cos�n̄,x� + ��12

s �x + �22
s �y�cos�n̄,y�

De
n = �e15�x + e25�y�cos�n̄,x� + �e14�x + e24�y�cos�n̄,y�
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D̄e
n = �e15�x + e14�y�cos�n̄,x� + �e25�x + e24�y�cos�n̄,y�

Note that D̄e
n=De

n when e14=e25.
Let P
 ,Q
, Pe

� ,Qe
� and F
 ,Fe


 be continuous functions in a
finite simply connected domain ��R2 with a piecewise smooth
boundary ��. The following boundary value problem plays the
central role in our work:

�3
�2�
 − a0 · �e

�2�
e = F
 over � �15a�

�e
�2�
 + ��

�2�
e = Fe

 over � �15b�

D1
n
 − a0 · De

n
e = P
 cos�n̄,x� + Q
 cos�n̄,y� on ��

�15c�

D̄e
n
 + D�

n
e = Pe

 cos�n̄,x� + Qe


 cos�n̄,y� on �� �15d�

We also assume the initial values for two unknown functions

 ,
e are


�0,0� = 
e�0,0� = 0 �16�
We call this boundary value problem a coupled Neumann problem
�CNP� in � for the functions 
 ,
e. The CNP generalizes Neu-
mann problem that serves for monoclinic elastic beam, i.e., eij

=�ij
s =0, see �8�

�3
�2�
 = F
 over � �17a�

D1
n
 = P
 cos�n̄,x� + Q
 cos�n̄,y� on �� �17b�

The next statement is similar to the necessary condition for a
classical Neumann problem.

Proposition 2. The necessary conditions for the solution exis-
tence of the CNP (15a)–(15d) and (16) are

� �
�

�P,x

 + Q,y


 − F
� =� �
�

�Pe,x

 + Qe,y


 − Fe

� = 0 �18�

The proof of Proposition 2 is based on the following identities for
a smooth function 
:

� �
�

��3
�2�,�e

�2�,�e
�2�,��

�2��
 =�
��

�D1
n,De

n,D̄e
n,D�

n�


Following the classical scheme �of Neumann problem� one may
prove that condition �18� is SUFFICIENT for the existence of a so-
lution of a CNP, and the solution is unique.

Remark 3. In the case of the transtropic piezoelectric material,
the differential operators above are

�3
�2� = a44 · ��2� �e

�2� = e15 · ��2� ��
�2� = �11

s · ��2�

D1
n = a44 ·

d

dn
De

n = D̄e
n = e15 ·

d

dn
D�

n = �11
s ·

d

dn

where d /dn= �� /�x�cos�n̄ ,x�+ �� /�y�cos�n̄ ,y� is the (geometrical)
normal derivative and ��2�= ��2 /�x2�+ ��2 /�y2� is the Laplace op-
erator. Hence the CNP �15a�–�15d� and �16� is reduced to a sim-
pler system. Namely,


 =
1

�
��11

s 
̃ + d15
̃e� 
e =
1

�
�− e15
̃ + 
̃e�

where �=�11
s +d15e15	0 and the functions 
̃ and 
̃e are the

�unique� solutions of the Neumann problems

��2�
̃ =
1

a44
F
 over �

d

dn

̃ =

1

a44
�P
 cos�n̄,x� + Q
 cos�n̄,y�� on ��


̃�0,0� = 0,

��2�
̃e = Fe

 over �

d

dn

̃e = Pe


 cos�n̄,x� + Qe

 cos�n̄,y� on ��


̃e�0,0� = 0

5 The Tip Loading Effects

5.1 Torsional Moment. The analytical solution originates
from the displacement hypothesis

u = − 6yz v = 6xz w = 6��x,y�

Hence we assume that the rotation �z=6z is a linear function of
z. The warping, w�x ,y� is a product of the beam twist �=6 �the
warping amplitude�, and an unknown function, ��x ,y�, that physi-
cally represents the shape of the out-of-plane warping �usually
termed as the torsion function�. The constant 6 �not known as
yet� plays the role of the piezoelectric beam torsional rigidity �i.e.,
the factor by which we divide a torsional moment of a beam to
obtain the twist per unit length�. Assume that electrical potential
function does not depend on z, i.e., �=−6�6�x ,y�, E3�x ,y�=0,
and

E1�x,y� = 6�6,x�x,y� E2�x,y� = 6�6,y�x,y�
The above displacement assumption yields a state where all strain
components vanish �e.g., �1=�2=�3=�6� except for

�4 = 6��,y + x� �5 = 6��,x − y�

Let a0=a44a55−a45
2 	0. Hence the stress components are �i=0

�i=1,2 ,3 ,6�, and

1

6
�4 = −

1

a0
�Q� + a45�,x − a55�,y� − e14�6,x − e24�6,y

1

6
�5 = −

1

a0
�P� − a44�,x + a45�,y� − e15�6,x − e25�6,y

where P�=a45x+a44y, Q�=−a55x−a45y, see �8�. The electrical
displacement components are D3=0 and

1

6
D1 = �11

s �6,x + �12
s �6,y + �e14��,y + x� + e15��,x − y��

1

6
D2 = �12

s �6,x + �22
s �6,y + �e24��,y + x� + e25��,x − y��

The first two equilibrium equations �6a� and �6b� are satisfied
identically as well, while the third one and the equation div D
=0, yields �15a� and �15b� with 
=�, 
e=�6 and

F� = 0 Fe
� = e25 − e14

From �9c� and �9d� we obtain Neumann-type boundary conditions
�15c� and �15d� where Pe

�=e15y−e14x, Qe
�=e25y−e24x.

The other cases of tip loading are considered similarly.

5.2 Summarizing Solution Components. We summarize
here the so-called “Saint-Venant’s problem,” namely, the effect of
the tip forces Px , Py , Pz, the tip moments Mx ,My ,Mz, the piezo-
electric tip forces P1

D , P2
D , P3

D, and the piezoelectric tip moments
M1

D ,M2
D ,M3

D.
It should be noted that the solution expressions are “symmetric”

under the following parameter interchange: 1↔2, 4↔5, x↔y,
u↔v, P↔Q, etc. One may obtain symmetric expressions using
operation “Sym.” For example, u↔v means u=Sym�v� and v

1098 / Vol. 74, NOVEMBER 2007 Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.42. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



=Sym�u�. Also, Q�1↔P�2 and D2=Sym�D1�.
The stress components are � j =0, j=1,2 ,6, and

�3 =
1

a33
�3 − 1x − 2y − �l − z��4x + 5y��

�4 =
4

a0
�Q�1 + a45�1,x − a55�1,y� +

5

a0
�Q�2 + a45�2,x − a55�2,y�

−
6

a0
�Q� + a45�,x − a55�,y� − 6�e14�6,x + e24�6,y�

+ 4�e14�4,x + e24�4,y� + 5�e14�5,x + e24�5,y�

�5 = Sym��4� �19�

These expressions are based on six nontrivial functions: the elec-
trical potential functions �i�x ,y� �i=4,5 ,6�, the torsion function
��x ,y�, and the bending functions �1�x ,y� and �2�x ,y�, that
should be solved for each specific nonhomogeneous cross-section
geometry. Note that for the MON13z material under discussion,
the in-plane stress components ��1 ,�2 ,�6� vanish for all tip loads.
The strain components are obtained from the stress-strain relation-
ships �are similar to the solution for elastic beam in �8�, pp. 263–
264�

�i =
ai3

a33
�3 − 1x − 2y − �l − z��4x + 5y�� i = 1,2,3,6

�4 = 4�a36x
2 + 2�a23 − 2a33�xy

2a33
− �1,y

+ 5�a23y2 − �a13 + 2a33�x2

2a33
− �2,y + 6��,y + x�

�5 = Sym��4� �20�

The corresponding displacements are �see �8� for an elastic beam�

u = 1� a23

2a33
y2 −

a13

2a33
x2 +

1

2
z2 − 2�a13

a33
xy +

a36

2a33
y2

+ 3�a13

a33
x +

a36

2a33
y − 6yz + 4��l − z��−

a13

2a33
x2 +

a23

2a33
y2

+
z2

2
�l −

z

3
� − 5�l − z��a13

a33
xy +

a36

2a33
y2

+ u0 − �z
0y + �y

0z

v = Sym�u�

w = �3 − 1x − 2y�z − 4��l −
z

2
xz + xy2 + �1�

− 5��l −
z

2
yz + x2y + �2� + 6� + w0 − �y

0x + �x
0y

where u0 ,v0 ,w0 are rigid displacements, while �x
0 ,�y

0 ,�z
0 are

rigid rotations. For a clamped-free beam with clamped-I type of
geometrical conditions at its root we obtain u0=v0=w0=�x

0=�y
0

=�z
0=0. For a clamped-free beam with clamped-II type of geo-

metrical conditions at its root we apply

u0 = v0 = w0 = �z
0 = 0 �x

0 = Sym��y
0�

2�y
0 = − 4�1,x�0,0� − 5�2,x�0,0� − 6�,x�0,0�

The electrical potential function and the electric field strength are

� = 4�4�x,y� + 5�5�x,y� − 6�6�x,y� + const

E1 = 6�6,x − 4�4,x − 5�5,x

E2 = 6�6,y − 4�4,y − 5�5,y,E3 = 0

The electrical displacement components are

D1 = 4�P4
e − e14�1,y − e15�1,x� + 5�P5

e − e15�2,x − e14�2,y�

+ 6�e14��,y + x� + e15��,x − y�� + 6��11
s �6,x + �12

s �6,y�

− 4��11
s �4,x + �12

s �4,y� − 5��11
s �5,x + �12

s �5,y�

D3 = �3 − 1x − 2y − �4x + 5y��l − z��
d33

a33

while D2=Sym�D1�. Recall that d33=�ie3iai3. The formulas for
i, calculated in what follows from the tip conditions, are similar
to those for an elastic beam in �8�.

5.3 Verification of Solution Hypothesis. As was shown, the
pair of functions, �� ,�6� satisfies a CNP �15a�–�15d�. The other
pairs of functions, ��1 ,�4� and ��2 ,�5�, also satisfy a CNP
�15a�–�15d� and �16�, where

F�1 =
a0 + a13a44 + a23a55 − a36a45 − 2a33a55

a33
x + 4a45y

F4
e =

1

a33
�y�e14�a23 − 2a33� − e25�a23 + 2a33�� + x�d33 + e14a36

+ e15a13 + e24�a23 − 2a33���

F�2 = Sym�F�1� F5
e = Sym�F4

e�

P�1 =
a44a13 − a36a45

2a33
x2 +

a45�2a33 − a23�
a33

xy −
a44�a23 + 2a33�

2a33
y2

Q�1 =
a55a36 − a45a13

2a33
x2 +

a55�a23 − 2a33�
a33

xy +
a45�a23 + 2a33�

2a33
y2

P4
e = e14

a36x
2 + 2�a23 − 2a33�xy

2a33
+ e15

a13x
2 − �a23 + 2a33�y2

2a33

Q4
e = e24

a36x
2 + 2�a23 − 2a33�xy

2a33
+ e25

a13x
2 − �a23 + 2a33�y2

2a33

and P�2 =Sym�Q�1�, Q�2 =Sym�P�1�, Q5
e =Sym�P4

e�, P5
e

=Sym�Q4
e�. In view of

P,x
� + Q,y

� = 0 Pe,x
� + Qe,y

� = e25 − e14 = Fe
�

the solution existence conditions �18� of the CNP for the pair
�� ,�6� are satisfied. Because

P,x
�1 + Q,y

�1 − F�1 P4,x
e + Q4,y

e − F4
e

P,x
�2 + Q,y

�2 − F�2 P5,x
e + Q5,y

e − F5
e

are linear functions of x ,y, the solution existence conditions �18�
of the CNP for the functions ��1 ,�4� and ��2 ,�5� are satisfied.

To gain a global look at the above presented solutions for the
Mz, Px, and Py tip loads, one may adopt the stress expressions, see
Eqs. �19�, as the initial stress hypothesis and carry out a verifica-
tion procedure that proves that these proposed expressions consti-
tute a valid solution of the Saint-Venant’s problem. This procedure
may be summarized as follows:

�a� We first note that the equilibrium Eqs. �6a� and �6b�, are
satisfied identically. From the third equilibrium Eq. �6c�,
we deduce the field equations of the type �15a� �in �� for
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the functions �, �i, �1, and �2. From Eqs. �8� we deduce
the field equations of the type �15b� �in �� for the func-
tions �, �i, �1, and �2.

�b� Similar to the above, the boundary conditions, Eqs. �9a�
and �9b�, are satisfied identically �since E3=0�. From the
boundary conditions, Eqs. �9c� and �9f�, we deduce the
boundary conditions of the type �15c� and �15d� �on the
contour ��� for the harmonic functions �, �i, �1, �2.

�c� By employing Eqs. �20� one may verify that all compat-
ibility equations, are satisfied identically.

Remark 4. In the case of transtropic piezoelectric material, the
functions �−d24�6, �+ ��11

s /e15��6 satisfy the same Neumann
problem, see Remark 3:

��2��̃ = 0 over �

d

dn
�̃ = y cos�n̄,x� − x cos�n̄,y� on ��

�̃�0,0� = 0

From the uniqueness of the solution for Neumann problem, we
conclude that the functions �−d24�6 and �+ ��11

s /e15��6 coincide,
i.e., ��11

s +d24e15��6=0. Since the factor �11
s +d24e15 is positive, we

get �6=0.
The CNP for �1, �4 is decomposed into two independent Neu-

mann problems for the functions �̃1=�1−d24·�4 and �̃4=e15�1
+�11

s ·�4, respectively. Similarly for �2, �5.

5.4 Fulfilling the Tip Conditions. The following integral
quantities will be shown to play the role of the piezoelectric beam
torsional rigidity of a beam,

D� =� �
�

1

a0
��yP� − xQ�� − �P��,x + Q��,y�� �21�

D�
e =� �

�

��e24x − e14y���,y + x� + �e25x − e15y���,x − y��

�22�

Di
e =� �

�

��e14x − e15y��i,x + �e24x − e25y��i,y� �23�

Di
� = −� �

�

���12
s x − �11

s y��i,x + ��22
s x − �12

s y��i,y� �24�

where i=4,5 ,6. In addition, we have

D�i
=� �

�

1

a0
�yP�i − xQ�i − �a45x + a44y��i,x + �a55x

+ a45y��i,y� i = 1,2 �25�

D�1

e =� �
�

��e24x − e14y��a36x
2 + 2�a23 − 2a33�xy

2a33
− �1,y

+ �e25x − e15y��a13x
2 − �a23 + 2a33�y2

2a33
− �1,x� �26�

The tip integrals Px, Py, Mz and P1
D, P2

D, M3
D are presented as

�Px

Py

Mz
	 =�

Iy

a33
0 0

0
Ix

a33
0

D4
e − D�1

D5
e − D�2

D� − D6
e
	�4

5

6
	

� P1
D

P2
D

M3
D 	 =�

d33Iy

a33
0 0

0
d33Ix

a33
0

D4
� + D�1

e D5
� + D�2

e
D�

e − D6
�
	�4

5

6
	

From the tip integrals Px, Py we get 4= �Px / Iy�a33, 5
= �Py / Ix�a33. Denote the matrices above by Q1, Q2, respectively.
Hence the fundamental relations between 12 tip quantities are
expressed by a tip coupling matrix Q=Q2Q1

−1: �P1
D , P2

D ,M3
D�

=Q · �Px , Py ,Mz�. This matrix Q is

Q =�
d33 0 0

0 d33 0

Q31 Q32
D�

e − D6
�

D� − D6
e
	

where

Q31 =
a33

Iy
·

�D4
� + D�1

e ��D� − D6
e� + �D�

e − D6
���D�1

− D4
e�

D� − D6
e

and Q32=Sym�Q31�. From the tip integrals Pz, Mx, My we obtain
1= �My / Iy�a33, 2=−�Mx / Ix�a33, 3=a33�Pz /S��. This means
M3

D=Q31Px+Q32Py + �D�
e −D6

�� / �D�−D6
e�Mz and

M1
D

Mx
=

M2
D

My
=

P3
D

Pz
=

P2
D

Py
=

P1
D

Px
= d33

Remark 5 (shear centers). The problem of the bending of an
isotropic cantilever and of a cantilever having anisotropy of a
special kind was studied by Saint-Venant �11�. In order to avoid
the torsional load due to a force applied at the tip of a beam, the
force must be applied at the elastic shear center of � �the location
where transverse bending induces no twist, see �10,8��. The coor-
dinates of the shear center of a piezoelectric beam are

xsc = a33

D�2
− D5

e

Ix
ysc = − a33

D�1
− D4

e

Iy

For electrical tip load we define the electric shear center as the
location where transverse Pi

D-bending induces no M3
D-tip moment.

We obtain

xsc
e = a33

D�2

e + D5
�

d33Ix
ysc

e = a33

D�1

e + D4
�

d33Iy

Remark 6 (torsional rigidity). The rigorous theory of pure tor-
sion was developed by Saint-Venant �12�. To establish an upper
bound for the torsional rigidity, we estimate the difference of in-
tegrals, D�−D6

e,
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D� − D6
e � −

1

4 � �
�

�a55�1
2 + 2a45�1�2 + a44�2

2�

� −
1

4
max�a44,a55� � �

�

��1
2 + �2

2�

where for short we use the notation

�1 = e15�6,x + e25�6,y �2 = e14�6,x + e24�6,y

and equality holds if, and only if,

�,y =
1

2
�a45�1 + a44�2� − x �,x =

1

2
�a55�1 + a45�2� + y

Note that for a purely elastic beam, �1=�2=0, the equality is not
reachable, �8�, since �,yx=−1�1=�,xy. We subsequently conclude
that

D� − D6
e �

a44Ix + a55Iy

a0
+� �

�

�1

4
�a55�1

2 + 2a45�1�2 + a44�2
2�

+ x�2 − y�1�
When the inequality above is taken as equality the functions �̃, �̃6
are polynomials in x, y of degree �2, their expressions are very
long. In extremal case D�−D6

e obtains a maximal value on a do-
main with elliptical boundary. Analogous estimates can be ob-
tained for the difference of integrals D�

e −D6
� to establish an upper

bound for the electric component of torsional rigidity.

5.5 Solution Procedure

1. Extension and bending. To determine the effect of the Pz,
Mx, and My �or P3

D, M1
D, and M2

D� triad, the system origin
location may be selected arbitrarily and the following pro-
cedure is adopted: �a� calculate 1, 2, 3, �b� calculate the
stress, strain, and �electrical� displacement components
�while 4=5=6=0�.

2. Shear and torsion. To determine the effect of the Px, Py, Mz

�or P1
D, P2

D, M3
D� triad, the following procedure is adopted:

�a� select system orientation �i.e., the axes direction in the x,
y-plane�, �b� solve three CNP for the functions �, �i, �1, �2,
�c� calculate D�, D�

e , Di
e, Di

�, D�i
, D�i

e of Eqs. �21�–�26�,
respectively, and then the tip coupling matrix Q, �d� calcu-
late 4, 5, 6, �e� calculate the stress, strain, and �electrical�
displacement components �while 1=2=3=0�.

6 Examples of Solutions

6.1 Exact Solution for an Elliptical Beam. Consider a
clamped elliptical beam, made of MON13z type material. The
cosines of the angles between the normal to the ellipse �of semi-

axes ã� b̃	0� and the x- and y-axes are given as

cos�n̄ ,x�= �b̃ / �̃��x / ã�, cos�n̄ ,y�= �ã / �̃��y / b̃�, where �̃

=��b̃2 / ã2�x2+ �ã2 / b̃2�y2 is the “parametrization velocity.” The

cross-section area, and the moments �of inertia� are S�=�ãb̃ and

Iy = 1
4�ã3b̃, Ix= 1

4�ãb̃3.
Proposition 7. Let F
, F


e and P
, Q
, Pe

, Qe


 be general
polynomials in x, y, satisfying conditions, Eqs. (18), in ellipse
� : �x2 /a2�+ �y2 /b2��1. Then the solution functions 
, 
e of a
CNP defined in � by Eqs. (15a)–(15d) are also polynomials of
degree k
=max�k1+1,k2+2�, where k1=max�deg P
 ,deg Q
 ,
deg Pe


 ,deg Qe

� and k2=max�deg F
 ,deg F


e �.
This proposition plays a key role for producing test examples in

what follows. Based on Proposition 7 one may show �similarly as
in �8�� that the torsion and bending functions �, �1, �2 and their
piezoelectric companions �i �i=4,5 ,6� are polynomials of x, y
coordinates in an ellipse. Namely, for the torsion warping function
��x ,y� and its electrical representative �6

e�x ,y� we arrive at the
second-order polynomials

� = H20
� x2 + H11

� xy + H02
� y2 �6

e = H20
�6x2 + H11

�6xy + H02
�6y2

The bending functions �1�x ,y�, �2�x ,y� and their electrical repre-
sentatives �4

e�x ,y�, �5
e�x ,y� for an elliptical cross section are sums

of third-degree and linear homogeneous polynomials of x, y

�i = H30
�i x3 + H21

�i x2y + H12
�i xy2 + H03

�i y3 + H10
�i x + H01

�i y

� j = H30
�jx3 + H21

�jx2y + H12
�jxy2 + H03

�jy3 + H10
�jx + H01

�jy

where i=1,2, j=4,5 Hence for elliptical beam the solution func-
tions �stress, strain, etc.� of Saint-Venant’s problem are polynomi-
als in x, y, z.

Example 8. (orthotropic beam). Consider a piezoelectric ellip-
tical beam made from orthotropic material, a45=0, and let �12

s

=0 and e14=e25=0. Note that d15=e15a55, d24=e24a44. Then

� =
a44a55�e15

2 b̃4 − e24
2 ã4� + ��22

s ã2 + �11
s b̃2��a44b̃

2 − a55ã
2�

��22
s ã2 + �11

s b̃2��a55ã
2 + a44b̃

2� + a44a55�e24ã
2 + e15b̃

2�2
xy

�6 = −
2ã2b̃2�e24a44 − a55e15�xy

��22
s ã2 + �11

s b̃2��a55ã
2 + a44b̃

2� + a44a55�e15b̃
2 + e24ã

2�2

From Eqs. �22� and �24� follow zero values of some tip integrals:
D� j

e =D� j
=D4

� =D5
� =D4

e =D5
e =0. Substituting ��x ,y� and �6�x ,y�

in Eqs. �21� and �23� yields the following expressions for the
integrals:

D� =

�

2
ã3b̃3��d15 + d24��e24ã

2 + e15b̃
2� + 2��11

s b̃2 + �22
s ã2��

��22
s ã2 + �11

s b̃2��a55ã
2 + a44b̃

2� + a44a55�e15b̃
2 + e24ã

2�2

D6
e =

�

2
ã3b̃3�e24ã

2 − e15b̃
2��d15 − d24�

��22
s ã2 + �11

s b̃2��a55ã
2 + a44b̃

2� + a44a55�e15b̃
2 + e24ã

2�2

D�
e =

�

2
ã3b̃3 ·

2d24d15�e24ã
2 + e15b̃

2� + ��22
s ã2 + �11

s b̃2��d24 + d15�

��22
s a44 + �11

s a55�ã2b̃2 + �22
s a55ã

4 + �11
s a44b̃

4 + a44a55�e15b̃
2 + e24ã

2�2

D6
� =

�

2
ã3b̃3 ·

�d24 − d15���22
s ã2 − �11

s b̃2�

��22
s a44 + �11

s a55�ã2b̃2 + �22
s a55ã

4 + �11
s a44b̃

4 + a44a55�e15b̃
2 + e24ã

2�2
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Hence the matrices Q1, Q2 are

Q1 =�
Iy

a33
0 0

0
Ix

a33
0

0 0 D� − D6
e
	 Q2 =�

d33Iy

a33
0 0

0
d33Ix

a33
0

0 0 D�
e − D6

�
	

The tip coupling matrix Q has a diagonal view with

Q11 = Q22 = d33 Q33 =
D�

e − D6
�

D� − D6
e

=
d15�22

s ã2 + d24�11
s b̃2 + d15d24�e24ã

2 + e15b̃
2�

�e24d24 + �22
s �ã2 + �e15d15 + �11

s �b̃2

For the case d24=d15 we have �6=0, D6
� =D6

e =0, D�
e

=�ã3b̃3e24/ ã2+ b̃2, and expressions for �, D� are simplified to
known formulas in elasticity theory, see �8�,

� =
a44b̃

2 − a55ã
2

a55ã
2 + a44b̃

2
xy D� =

�ã3b̃3

a55ã
2 + a44b̃

2

Additionally, for the case b̃2 / ã2=�22
s /�11

s we have D6
� =0, and for

the case b̃2 / ã2=e24/e15 we have D6
e =0.

Example 9 (transtropic circular beam). Consider a piezoelectric

circular beam �ã= b̃, radius of a cross section� made from a poled
piezoelectric ceramic, a55=a44, �11

s =�22
s ,e15=e24, a45=�12

s =e14
=e25=0. Then �=�6=0, see Eqs. �27�, the other four auxiliary
functions are nonzero,

�1 =
x

8a33�e24d24 + �11
s �

���2a13 + a44��11
s + �d33 + 2e24a13�d24�x2

+ ��2a13 − 8a33 + a44��11
s + d24�2�a13 − 4a33�e24 + d33��y2

− ã2��2a13 + 3a44��11
s + �3d33 + 2e24a13�d24��

�4 =
d33 − d24

8a33�e24d24 + �11
s �

�x2 + y2 − 3ã2�x

and �5=Sym��4�, �2=Sym��1�. The electrical potential is

�e =
d33 − d24

8�e24d24 + �11
s �

�x2 + y2 − 3ã2��Px

Iy
x +

Py

Ix
y

The tip integrals are D�=�ã4 /2a44, D�
e =�ã4e24/2. Finally, we

obtain �D�
e −D6

�� / �D�−D6
e�=d24.

6.2 Numerical Solutions. Examples of what follows deal
with a clamped beam made of transtropic material PZT-5A. The
length of a beam is l=10. All expression in what follows are given
approximately. One may derive d33
374·10−12.

Example 10 (elliptical piezoelectric beam). Consider a piezo-
electric beam made of piezoceramic PZT-5A with elliptical cross

section, semi axes ã=2, b̃=1, that undergoes a tip moment Mz

=1 only. We obtain D�
0.106·1012, D�
e 
61.8, D6

e =D6
� =0. The

tip coupling matrix Q has a diagonal view with

Q11 = Q22 
 374 · 10−12 Q33 
 584 · 10−12 �27�

The electric tip moment is M3
D= �D�

e −D6
�� / �D�−D6

e�
584·10−12.
The -parameters are

1 
 3.0 · 10−12My 2 
 − 11.97 · 10−12Mx

3 
 3.0 · 10−12Pz 4 
 3.0 · 10−12Px

5 
 12.0 · 10−12Py 6 
 9.45 · 10−12Mz

The auxiliary functions are �
−0.60xy, �6=0, and

Fig. 3 Piezoelectric beam deformation for Mz=1

Fig. 4 Torsional function �

Fig. 5 Bending function �1

Fig. 6 Electrical bending function �4

1102 / Vol. 74, NOVEMBER 2007 Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.42. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



�1 
 0.17x3 − 0.84xy2 − 2.8x

�2 
 0.16y3 − 0.82x2y − 0.68y

�4 
 �1.01x − 0.0842x3 − 0.112xy2� · 109

�5 
 �0.313y − 0.0521x2y − 0.104y3� · 109

The nonzero stress and strain components are �4
0.08x, �4

−0.32y, and �4
3.718·10−12x, �5
−15.12·10−12y. The dis-
placement is u
−9.45·10−12yz, v
9.45·10−12xz, w

−5.66·10−12xy. The electrical potential is �e=0, and the elec-
trical displacements components are D1
−0.19·10−9y, D2

0.048·10−9x.

Example 11 (rectangular piezoelectric beam). Let a beam with
a square cross section, d=h=1, made of piezoceramic PZT-5A,
undergo a tip moment Mz=1 only, Fig. 3. The cross-section area,
and the moments �of inertia� are S�=4hd=4 and Iy = 4

3d3h= 4
3 , Ix

= 4
3dh3= 4

3 . As was shown in Remark 4, �6=0. We obtain D�


0.047·1012, D�
e 
27.6, D6

e =D6
� =0. The induced electric tip mo-

ment is M3
D=584·10−12. The tip coupling matrix is given in Eq.

�27�. We find approximate solutions of the CNPs presenting aux-
iliary torsion and bending functions �, �1, �2 and �4, �5 by poly-
nomials of the 12th degree, see Figs. 4–6 �the graphs of the sym-
metric expressions are omitted�. The relative error in this case is

10−2. Then the stress components �i=0 �i=1,2 ,3 ,6�, and dis-
placement components are u
−21·10−12yz, v
−21·10−12xz.
Other functions of the solution have long polynomial expressions,
and they are presented in Figs. 7–9. The weight coefficients are
1=2=3=4=5=0 and 6
18·10−12.

7 Conclusions

�1� Analytical solution of the Saint-Venant’s problem for a ho-
mogeneous piezoelectric beam is presented. It generalizes
the known “elastic” solution, see �8�.

�2� Three pairs of auxiliary �torsion and bending� functions for
a piezoelectric beam are introduced. They satisfy the
coupled Neumann problem �CNP�. In the limit case CNP
transforms to the “elastic” Neumann problem.

�3� The concepts of the torsion/bending functions, torsional ri-
gidity and shear center, tip coupling matrix for a piezoelec-
tric beam are developed.

�4� Examples of exact solutions for elliptical/circular beam and
numerical solution for a rectangular beam are presented.
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Modeling Helicopter Blade
Sailing: Dynamic Formulation in
the Planar Case
As part of a research project aimed at simulating rotor dynamic response during ship-
board rotor startup and shutdown operations, a dynamic model of the ship–helicopter–
rotor system that is appropriate for use in predicting rotor elastic response was devel-
oped. This planar model consists of a series of rigid bodies connected by rotational
stiffness and damping elements that allow motion in the flapwise direction. The rotors
were partitioned into an arbitrary number of rigid beam segments having the inertial and
geometrical properties of a typical rotor. Helicopter suspension flexibility and damping
were also modeled, although the helicopter was otherwise considered as a rigid body.
Lagrange’s equation was used to derive the governing dynamic equations for the
helicopter–rotor model. The effect of ship motion on blade deflection was also consid-
ered. The ship motion supplied as input to the model included representative frigate flight
deck motion in three dimensions corresponding to an actual sea spectrum, ship particu-
lars and ship operating conditions. This paper is intended to detail the dynamic approach
adopted for this blade sailing study, and its conceptual validation in the planar case. The
methodologies that have been developed lend themselves to easy expansion into three
dimensions, and into torsion and lead/lag modeling. The amount of blade motion induced
by ship motion on nonrotating helicopter blades is included. Although aerodynamic loads
are a major contributor to blade sailing, this paper focuses on the dynamics aspect of the
problem, and thus does not include aerodynamic effects. �DOI: 10.1115/1.2722766�

Keywords: blade sailing, tunnel strike, shipboard helicopter, multi-body dynamics,
Lagrange’s equation, embedded Riemann sums, dynamic interface analysis, rotor
engage/disengage

Introduction
During startup and shutdown operations on ship decks, helicop-

ter rotor elastic response is of concern for flight safety reasons.
While the rotors are engaged or disengaged, they turn at low
speeds and therefore can be subjected to high wind-induced aero-
dynamic forces without the benefit of the centrifugal stiffening
present at operating speeds. This excitation, combined with ship
deck motion during all but the most benign sea and wind condi-
tions, can cause excessive deflection of rotor blades, which, as a
result, can come into contact with the fuselage or tailboom of the
helicopter. This phenomenon, called “tunnel strike” or “tailboom
strike,” compromises the safety of flight crews, results in airframe
damage, and may bring the airworthiness of the helicopter into
question. Figure 1 shows a Canadian patrol frigate with a landing
helicopter. Blade sailing, which is the excessive motion of heli-
copter blades during engage/disengage, could be experienced by
this or any other shipboard helicopter upon landing and prior to
launch.

Current guidelines for safe engage/disengage operations are
based largely on experience and some understanding of the ship
motion and flight deck aerodynamics for different ship headings
and speeds as well as sea and wind conditions. As such, blade
sailing has been a relevant research topic since the 1960s. Litera-
ture relating to the dynamics of blade sailing has been well sum-
marized by several researchers, including Newman �1� and Keller
�2�. The studies cited in these works cover the modeling of semi-
rigid rotors �3� and articulated rotors, using finite element methods
�4–9� and multibody methods �10,11�. For articulated rotors, the

effect of droop and flap stop impacts �12� have been discussed.
They also include various validation experiments �13–15� that
have been compared with the models. Due to the complex nature
of the helicopter–ship interface and the variety of contributors that
are believed to affect blade motion, further research is required to
develop tools suitable for comprehensively defining safe engage/
disengage operational envelopes for many different types of heli-
copters. The purpose of this research is to develop a simulation to
model the complete ship–helicopter–rotor system, including a po-
tentially computationally efficient blade modeling concept that
has not previously been applied in the blade sailing context. This
paper lays the mathematical groundwork for the dynamics of this
problem.

Model Description
The helicopter model used in this research is based on the phi-

losophy that a continuously flexible body can be modeled by a
series of rigid segments connected by flexible elements. Provided
that the geometric nonlinearities that result from large blade de-
flections are preserved in the equations of motion, this method has
been shown to approximate flexible body behavior as well as geo-
metrically nonlinear finite element analysis and has the potential
for decreased solution times �16,17�.

The helicopter model, with four blade segments per blade as an
example, is shown in Fig. 2.

The number of degrees of freedom, ndof, required to completely
define the helicopter motion is given by

ndof = 3 + n1 + n2 �1�

where the constant 3 comes from the two translational and one
rotational degrees of freedom provided by the helicopter suspen-
sion, and n1 and n2 are the number of segments in the port and
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starboard blades, respectively. Ship motion is a function of time
and as a result does not have associated degrees of freedom.

The orientation of each blade segment is defined by the angle,
�i,n, between the ith segment and the �i−1�th segment as shown
in Fig. 3. This means that the rotational spring force in each joint
depends on only a single degree of freedom, but that the position
and velocity of the mass associated with the ith segment of the nth
blade depends on angles �, which is the orientation of the heli-
copter body, and �1,n to �i,n. This results in a cascading angle
effect that is inherent in the position and velocity expressions for
each mass and therefore a major characteristic of the equations of
motion for this system.

In this model, the generalized coordinates corresponding to the
degrees of freedom are

�q�T = �YC ZC � �1,1 . . . �n1,1 �1,2 . . . �n2,2 �T �2�

where YC, ZC, and � are the horizontal, vertical, and angular po-
sitions of the equivalent suspension attachment point on the heli-
copter in the stationary global reference frame. The angles, �i,n,
are the relative joint angles of the ith segment on the nth blade.
The model is completely general, in that the number of segments
into which the blade is partitioned and the properties for each
individual segment can be user defined. Each blade segment is
defined with properties mi,n, the segment mass which is assumed
concentrated at the segment center �although the model is theo-
retically general enough to allow it to be concentrated at any point
in space relative to the blade segment�; di,n, the segment length;
and Ji,n, the segment mass moment of inertia. Each blade segment
is connected to the last with a rotational element of stiffness ki,n
and viscous rotational damping ci,n. Since the properties can be
individually assigned to each segment, they can be tuned to
closely approximate a nonuniform blade. As with variable finite
element gridding, smaller segments can be used in areas of higher

flexibility, while longer segments can be used in stiffer areas.
The distinction between semi-rigid and articulated blades is an

important one in helicopter blade modeling. The blade model
shown in Fig. 3 can be used to simulate either, provided the cor-
rect parameters are included in the model. The semi-rigid rotor
requires one representative stiffness parameter at the root. The
articulated rotor is more complicated, in that the joint stiffness can
be modeled as a function of joint angle, where the stiffness is zero
while the blade flaps in the hinge range, and finite while the blade
is interacting with the droop and flap stops. In the planar case
discussed in this paper, with the rotational and aerodynamic ef-
fects not included, the articulated blade behaves very much like a
semi-rigid blade in that the blade does not lift off the droop stops.
As such, validation of the stop effect on blade behavior is not
discussed.

Figure 4�a� shows a schematic of a typical frigate, and indicates
where the helicopter is typically located during startup and shut-
down operations. Since the model exists in the vertical plane,
there are two orthogonal vertical planes in which the helicopter
can exist on the ship deck. Figure 4�b� shows the helicopter in the
roll plane, �Y ,Z�, and in the pitch plane, �X ,Z�. All coordinate
systems used in the dynamic formulation are right handed.

The effects of ship motion on the helicopter in both planes were
examined separately. Note that most of the paper discusses the roll
plane, �Y ,Z�, during equation development, since the equations
for the pitch plane are identical if all quantities in Y and y are
replaced with equivalent quantities in X and x, respectively.

Equations of Motion
Because the dynamics are based on a rigid body model, it is

possible to derive a set of completely general equations of motion
which need only be evaluated for any set of user-defined param-
eters. While many methods exist �18� that can be used to derive
the equations of motion for a system of rigid bodies, the applica-
tions of these in a sense where the number of rigid bodies is
arbitrary is not trivial. The derivation and application of the equa-
tions of motion are detailed here.

Fig. 2 A planar helicopter model with four blade segments per
blade

Fig. 3 A helicopter blade modeled using rigid blade segments

Fig. 4 Ship and helicopter schematic

Fig. 1 A Canadian patrol frigate
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Equation Derivation. The equations of motion for the ship–
helicopter–rotor system were derived using Lagrange’s equation
�19�

d

dt
� �T

� q̇p
� −

�T

�qp
+

�U

�qp
= Qp �3�

where T is the system kinetic energy; U is the system potential
energy; and Qp is the total nonconservative applied force associ-
ated with the pth degree of freedom. This method is useful be-
cause the kinetic and potential energy expressions are scalar and
therefore relatively straightforward to determine.

The kinetic energy for the ship–helicopter–rotor model comes
from two major sources: translational and rotational energy. Each
rigid body is affected by kinetic energy from both sources. The
kinetic energy is given by

T = T1 + T2 + 	
i=1

n1

�T3 + T4� + 	
i=1

n2

�T5 + T6� �4�

where T1�body translational energy; T2�body rotational energy;
T3� port segment translational energy; T4� port segment rota-
tional energy; T5� starboard segment translational energy; and
T6� starboard segment rotational energy.

The potential energy comes from two sources as well: spring
and gravitational energy. The expressions are very similar to the
kinetic energy. The potential energy is given by

U = U1 + U2 + 	
i=1

n1

�U3 + U4� + 	
i=1

n2

�U5 + U6� �5�

where U1� suspension spring energy; U2�body gravitational en-
ergy; U3�port segment spring energy; U4�port segment gravita-
tional energy; U5�starboard segment spring energy; and
U6�starboard segment gravitational energy.

A complete expansion including all the terms in both the kinetic
and potential energy expressions can be found in Eqs. �A1�–�A16�
in the Appendix.

In order to obtain a complete set of equations of motion,
Lagrange’s equation was applied once for each degree of freedom,
with p varying from 1 to ndof. Each application resulted in an
expression of the form

�1,pŸC + �2,pZ̈C + �3,p�̈ + 	
i=1

n1

�i,p�̈i,1 + 	
i=1

n2

�i,p�̈i,2 + �p = Qp

�6�

where �1,p, �2,p, �3,p, �k,p, �k,p, �p, and Qp are all functions of the
generalized coordinates and their first time derivatives.

Since the solution was advanced through time using the Runge–
Kutta–Fehlberg integration method, the values of each of the co-
ordinates and the corresponding first time derivatives �generalized
velocities� are known at each time step, and the second time de-
rivatives �generalized accelerations� of each coordinate are un-
known. Therefore, Eq. �6� can be rearranged to

�1,pŸC + �2,pZ̈C + �3,p�̈ + 	
i=1

n1

�i,p�̈i,1 + 	
i=1

n2

�i,p�̈i,2 = Qp − �p

�7�

which is in the form of Newton’s second law and is therefore a set
of linear equations with the accelerations being the unknown
quantities.

The resulting system of equations can be written in the matrix
form �M��q̈�= �Q�. The equivalent mass matrix

�M� = 

�

�ŸC
� d

dt� �T

�ẎC
�� . . .

�

��̈n2,2
� d

dt� �T

�ẎC
��

� � �
�

�ŸC
� d

dt� �T

��̇n2,2
�� . . .

�

��̈n2,2
� d

dt� �T

��̇n2,2
�� �

�8�

can be constructed if the derivative of Eq. �7� is taken with respect
to the second time derivative of each degree of freedom sequen-
tially to extract the corresponding matrix elements.

The equivalent force vector is

�Q� =  Q1 − �1

� − �
Qndof

− �ndof

� �9�

where the terms contained in �p come from the left-hand side of
Lagrange’s equation, and are largely the result of the geometri-
cally nonlinear centripetal and Coriolis forces. The terms in Qp
come from externally applied forces, that are discussed in a sub-
sequent section.

Once the quantities �M� and �Q� have been determined, the
system can be converted to first order form as shown

�I 0

0 M
��q̇

q̈
� = � q̇

Q
� �10�

This equation is of the familiar form, �A��ẋ�= �b� thereby al-
lowing the dynamic solution to be advanced numerically through
time by an adaptive time step Runge–Kutta–Fehlberg integrator.

Both �M� and �Q�, which were extracted from Lagrange’s
equation symbolically and depend on �q� and �q̇�, are easily re-
evaluated at each time step.

Associated Challenges. The method for deriving the equations
of motion described above is straightforward, however differenti-
ating the completely general expressions presents challenges that
are worth mentioning.

The following equation

S1 =
1

2	
k=1

n1

mk,1��− 	
i=1

k �sin�� + 	
j=1

i

� j,1����̇ + 	
j=1

i

�̇ j,1�di,1

− v�̇ sin�� + a� + ẎC +
1

2�sin�� + 	
j=1

k

� j,1��
���̇ + 	

j=1

k

�̇ j,1�dk,1�2� �11�

which is the kinetic energy from the horizontal component of
velocity of the port blade, is used to illustrate the challenges.

One characteristic of this equation is three layers of embedded
sums. The innermost layer, with index j, comes from the fact that
the position and orientation of each blade segment depends on the
angle of that segment and all others inboard of it. This cascading
angle effect appears frequently in the kinetic and potential energy
expressions, as well as in the final equations of motion. The
middle layer, with index i, comes from the fact that the velocity of
each segment is the sum of that body’s velocity relative to the
other bodies plus the other bodies’ velocities. The outermost layer,
with index k, results from the fact that the energy from each
segment must be summed to obtain a complete expression.

The challenge in differentiation arises from the fact that n1,
which is both the upper summation limit on the first sum and the
number of segments in the port blade, is arbitrary. This means that
all three layers of embedded sums are arbitrary including the in-
nermost angle summation, which contains the degree of freedom
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�l,1, with respect to which the derivative is required.
If both n1 and the index l with respect to which the derivative is

required are selected prior to differentiation, then all three layers
of sums become finite and defined, and the derivatives can easily
be taken using a symbolic mathematics package such as Maple
�20�. However, for a general solution, these quantities must re-
main unknown. It is impossible, then, for the software to evaluate
�S /��l,1 because there is no way to indicate that �l,1 is simply any
one of the �� j,1�.

To this end, a rule for differentiating the expressions by hand
was developed. The problem lies in differentiating

S2 = 	
j=1

k

� j,n �12�

with respect to an arbitrary �l,n. By inspection, it is clearly seen
that the derivative is

�S2

��l,n
= 1 �13�

Furthermore, the derivative of

S3 = 	
k=1

n1

	
j=1

k

� j,n �14�

is

�S3

��l,n
= 	

k=l

n1

1 = �n1 − l��1� �15�

which is perhaps not so obvious, since the lower index on the
summation must be changed to l to obtain the correct expression.
This is because any inner sums differentiated for k	 l do not
contain the important quantity �l,n, and therefore do not contrib-
ute to the final sum.

This phenomenon can be generalized in the following rule

�

��l2,n
�	

i=l1

n1

Gi� = 	
i=lmax

n1
�Gi

��l2,n

where lmax =�max�l1,l2� if Gi contains 	 j=1

k
� j,n

l1 otherwise
�16�

which shows how the indices of embedded sums must be updated
depending on the form of Gi. As is consistent with the rules of
differentiation, the chain rule applies when differentiating Gi.

This rule can be quickly illustrated with the example

S4 = 	
i=1

k �di,n	
j=1

i

� j,n� �17�

If k=3, clearly

S4 = d1,n��1,n� + d2,n��1,n + �2,n� + d3,n��1,n + �2,n + �3,n�
�18�

The derivative with respect to the second angle is

�S4

��2,n
= d2,n + d3,n = 	

i=2

k

di,n �19�

which can also be obtained from Eq. �16�.
Applying the rule shown, the derivative of Eq. �11� with respect

to an arbitrary blade segment angle, is given by

�S1

��̇l,1

= 	
k=l

n1

mk,1��− 	
i=1

k �sin�� + 	
j=1

i

� j,1����̇ + 	
j=1

i

�̇ j,1�di,1

− v�̇ sin�� + a� + ẎC +
1

2�sin�� + 	
j=1

k

� j,1��
���̇ + 	

j=1

k

�̇ j,1�dk,1��− 	
i=l

k �sin�� + 	
j=1

i

� j,1��di,1

+
1

2�sin�� + 	
j=1

k

� j,1��dk,1�� �20�

The rule given in Eq. �16� was used to generate, by hand, the
mass matrix, �M�, and parts of the forcing vector, �Q�. These
expressions were carefully checked by selecting a finite number of
blade segments for each blade, n1 and n2, and differentiation seg-
ment, l, and comparing the Maple-differentiated �20� expressions
with the hand derived expressions for the same finite values. In all
cases, the expressions were equal, indicating that the stated rule
works for every expression encountered in this study.

External Forces
External forces, applied to the system as part of �Q�, come from

two major sources: ship motion and aerodynamics.

Ship Motion. Ship motion is believed to be an important com-
ponent of a blade sailing study �21�. Ship motion depends on the
condition of the sea, including wave spectrum characterized by
significant wave height and modal period, and on the way the ship
responds to the sea. The latter is dependent on ship geometrical
and inertial properties and the operating conditions of the ship
including heading relative to the principal wave direction and ship
speed. Real sea profiles are made up of wave components having
many different amplitudes and frequencies, and can therefore be
assumed to be the sum of an infinite number of sine waves. If
wave amplitude is plotted in the frequency domain, it can be seen
that the sea is typically represented by a gamma distribution.

When exposed to some sea conditions, a ship will respond with
motion in six degrees of freedom: three translational motions,
surge, sway, and heave; and three angular motions, roll, pitch, and
yaw. These motions can also be shown to have gamma distribu-
tions of amplitude in the frequency domain. Thus, ship motion is
often obtained by multiplying the spectrum of ship response,
called response amplitude operators �RAOs� �22�, by the incom-
ing wave spectrum �23�. This yields a representation of the ship
motion in the frequency domain, which can be generated to give
motion at the ship center of mass, or at some other point such as
the flight deck. A time history representation of the ship motion in
each degree of freedom can be obtained by summing a finite num-
ber of frequency components to arrive at a realistic approximation
of the actual motion. In general, 40 frequency components are
considered sufficient to approximate motion for each degree of
freedom.

Since the amplitudes and frequencies used to approximate ship
motion have been extensively measured and researched �24�, the
displacement of each degree of freedom, k, can be determined
computationally by summing sine waves of 40 different frequen-
cies using

Dshipk = 	
j=1

40

�Ak,j sin�
k,jt + �k,j�� �21�

where Ak,j, 
k,j, and �k,j are the amplitude, frequency, and random
phase for the kth ship degree of freedom and the jth frequency
component. The amplitudes and frequencies are found using simu-
lated models of ship behavior, and the phase is generated ran-
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domly to enhance simulation fidelity �25,26�.
Representative ship motions at the flight deck of a Canadian

patrol frigate in sea state 5 are shown in Figs. 5 and 6. This ship
has a length of 134 m, a width of 16 m, and a displacement of
4770 t. Sea state 5 is characterized by a significant wave height of
4 m.

The velocity of each degree of freedom can be calculated simi-
larly, by differentiating Eq. �21� with respect to time, t

Vshipk = 	
j=1

40

�Ak,j
k,j cos�
k,jt + �k,j�� �22�

Only three components of the six degree-of-freedom motion
affect the planar model. In the roll plane, �Y ,Z�, only sway, heave,
and roll apply. In the pitch plane, �X ,Z�, only surge, heave, and
pitch apply.

Once the ship motions have been determined, they can be used
along with the relative displacements and velocities of the heli-
copter body to calculate the forces that act through the suspension.

Fig. 5 Ship surge, sway, and heave
Fig. 6 Ship roll, pitch, and yaw
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The fact that the suspension properties are defined in the helicop-
ter reference frame while the displacements and velocities are
defined in the global reference frame must be considered.

Therefore, the relative displacements and velocities between the
ship and helicopter must be transformed to the helicopter-fixed
reference frame for suspension force evaluation, and the resulting
forces transformed back to the global system. The applied suspen-
sion forces, FshipY, FshipZ, and the applied suspension moment,
Mship� are calculated using

FshipY

FshipZ

Mship�

� = �R�
ky 0 0

0 kz 0

0 0 k�

��R�TYship − YC

Zship − ZC

�ship − �
�

+ �R�
cy 0 0

0 cz 0

0 0 c�

��R�TẎship − ẎC

Żship − ŻC

�̇ship − �̇
� �23�

where

�R� = 
cos��� − sin��� 0

sin��� cos��� 0

0 0 1
� �24�

The rotational matrix �R� is used to perform the coordinate
transformations.

Aerodynamics. The aerodynamic forces, which come from a
highly unsteady flow field, are a major contributor to blade sail-
ing. In order to accurately estimate the aerodynamic forces, the
airwake in the vertical-streamwise plane, �Y ,Z�, for a typical frig-
ate in beam winds has been characterized through wind tunnel
tests. The tests were completed in the vertical wind tunnel facility
at the National Research Council of Canada using hot wire X
probes and scaled models of a typical frigate flight deck at a
number of different ship roll angles. The airwake model, obtained
from the experiments, describes variations in mean wind speed,
direction, and turbulence intensity with position in the �Y ,Z�
plane and with ship roll angle.

The aerodynamic forces on the blade are calculated from the
model based on the wind tunnel experiments in the classical man-
ner using angle of attack, wind velocity, and the appropriate co-
efficient of lift �27�. Drag does not act in the plane of the model.
The collective and cyclic blade angle inputs supplied by the pilot
are also known to affect blade sailing, and can also be considered.

Although a blade sailing study is incomplete without aerody-
namic effects, they have been excluded from this paper in order to
focus on the governing dynamics.

Model Validation
Since this model is intended for use in helicopter blade sailing,

the helicopter and ship motion parameters were chosen based on
the properties of a representative maritime helicopter and frigate
obtained from manufacturers, experimentation, and other sources.
The dynamic model was validated by comparing the simulation
results with expected dynamic behavior obtained from experi-
ments. In an effort to understand the effect of segment number, the
blade response for one, two, three, four, and seven blade segments
was studied.

Blade property selection is critical for capturing realistic blade
motion. The blade segment properties can be specified individu-
ally to allow for variation in properties with radius. The segment
properties depend on the number of segments being used. The
mass and geometric properties were obtained approximately from
data provided by a helicopter manufacturer. The blade weight is
distributed such that the inboard-most meter of the blade is sig-
nificantly heavier per unit length than the rest of the rotor. This
section was selected to be the first segment, and the remaining
rotor was divided evenly into the remaining segments. The mass

moments of inertia were calculated by considering the blade seg-
ment as a thin rod. The properties for three, four, and seven seg-
ments were selected in this manner; the two segment model was
created by combining the first and second, and third and fourth
segments from the four segment model.

In the nonrotating planar case, the rotor blade motion due to
ship motion is not sufficient to lift the blade off the droop stops.
Thus the root flap rotational spring was given a constant stiffness
and the blade behavior was studied assuming that semi-rigid and
articulated blades behave similarly.

The damping and stiffness of the connecting rotational springs
were obtained using the results from an experiment conducted on
a full scale helicopter with articulated blades. The data were gath-
ered by deflecting the tip of the blade down using a rope, releasing
the rope, and video taping the response. The blades did not lift off
the droop stops. This type of test is referred to as a “pull test.” The
stiffness and damping properties were selected by comparing the
digitized experimental data with the simulation results. A blade
“drop test” was simulated, in which the blades were allowed to
settle after being released from horizontal. The experimental data
suggest a blade structural damping ratio of about 0.05 based on
the measured logarithmic decrement. This value falls well within
the expected range.

Although stiffness and damping can vary with radius, they were
assumed constant in this study. Detailed blade-specific data can be
included when specific helicopter studies are conducted and the
properties of each helicopter become available.

A summary of the chosen properties for a four-segment blade is
given in Table 1. The representative blade length was taken to be
approximately 8.5 m, and the representative blade weight was
taken to be approximately 200 kg.

Figure 7 shows the experimental and simulated results for a
helicopter blade “pull test.” Note that the test used to tune the

Table 1 Segment properties for blade with four segments

No.

Fraction
of blade
length

�%�

Fraction
of blade

mass
�%�

Rotational
spring

stiffness
�Nm/rad�

Rotational
damping

coefficient
�N ms/rad�

1 13 46 320,000 4000
2 29 20 320,000 4000
3 29 16 320,000 4000
4 29 18 320,000 4000

Fig. 7 Blade tip deflection in free vibration for different blade
segmentation
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blade properties was a “drop test.” The results converge well with
the experimental response for three or more blade segments.

The experimental data and the simulated data do not agree ex-
actly. This can be attributed to a number of things, including some
vertical measurement error induced by the method used. Since the
numerical model includes helicopter suspension stiffness and
damping but not friction, a model of the blades alone was found to
agree more closely with the experimental data.

Convergence is also demonstrated by the static deflection of the
blades for varying numbers of segments, as shown in Fig. 8.

According to the static and dynamic convergence tests, three
blade segments are sufficient to provide convergence on the tip
static deflection for this relatively stiff sample blade. A four-
segment model was used to complete further simulations.

The suspension response was also validated using a drop test.
Figure 9 shows the results of dropping the helicopter from zero
suspension and blade deflection with both rigid and flexible
blades. With the blades rigid, the suspension response is charac-
terized by a single overshoot and a settling time of about 1 s.
These are typical values. With the blades flexible, the natural fre-
quency of the blades contributes to suspension motion beyond 1 s.
The vertical suspension stiffness and damping values are approxi-
mately 1,160,000 N/m and 122,800 Ns/m respectively; the heli-
copter mass was approximated as 13,000 kg. The damping ratio
required to achieve the approximate required suspension response
is 0.5.

Results
Simulations were run with the model in both the roll plane and

the pitch plane in order to determine the effect of ship motion on

blade deflection. Although ship motion alone cannot cause blade
sailing, it may be a significant contributor to the motion.

The blade deflections resulting from each separate motion di-
rection were examined, by separating out the individual motions
at the flight deck and applying them independently. This is an
important point because roll isolated at the ship center of mass
will result in both roll and sway at the flight deck. The individual
motions were then applied simultaneously. In the roll plane, Figs.
10–12 show the blade deflections due to each motion separately.

The effect of sway is very small, inducing only a few millime-
ters of blade tip deflection. Due to sway only, the blades move out
of phase with one another. The ship heave and roll motions induce
somewhat more significant blade deflections; about 4 cm each.
The blades move in phase when subjected to heave only. The
blades move out of phase when subjected to roll. An interesting
result of blade deflection under roll is that the value of the mean
of oscillation amplitude is increased during severe roll due to
centripetal effects from the flight deck rotation.

The blade deflection due to all three motions in the roll plane is
shown in Fig. 13.

The port blade deflections are smaller than the starboard deflec-
tions because the roll and heave motions are more in phase on the
port side of the model. The total blade deflection confirms that
blade sailing could potentially be influenced by ship motion.

In the pitch plane, Figs. 14 and 15 show the blade deflections
due to surge and pitch separately. The deflections due to heave

Fig. 8 Blade static deflection for experimental natural fre-
quency with blade segmentation

Fig. 9 Suspension drop test with blades rigid and flexible

Fig. 10 Blade tip deflection due to sway in the roll plane

Fig. 11 Blade tip deflection due to heave in the roll plane
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only in the pitch plane are identical to the heave-only motions in
the roll plane; this was verified through simulation.

Surge and pitch do not induce much blade deflection when
applied independently. This is supported by the fact that the blade

deflection in the pitch plane due to all three motions, as shown in
Fig. 16, closely resembles motion due to heave only.

Conclusions
Based on the results from this study, the following conclusions

can be drawn:

1. An elastic blade and landing gear model have been validated
for further studies of blade sailing;

2. The equations of motion for the model with an arbitrary
number of rigid blade segments has been derived and imple-
mented;

3. A rotor blade composed of rigid beam segments can be used
to approximate the behavior of a continuous flexible beam
representative of a rotor blade provided enough segments
are used; and

4. Ship motion has an impact on the motion of nonrotating
blades.

This paper establishes the fundamental dynamic approach re-
quired for the study of blade sailing, and the dynamic equations
can be easily advanced in order to study the phenomenon. In
addition to aerodynamic effects, which are already being ad-
dressed in the research, three-dimensional dynamics, including
variable blade rotation, torsional flexibility, lead/lag flexibility,

Fig. 12 Blade tip deflection due to roll in the roll plane

Fig. 13 Blade tip deflection in the roll plane

Fig. 14 Blade tip deflection due to surge in the pitch plane

Fig. 15 Blade tip deflection due to pitch in the pitch plane

Fig. 16 Blade tip deflection in the pitch plane
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and structural coupling shall be included. Once the aerodynamic
and dynamic models have been refined, a validation wind tunnel
test using a scaled rotor shall be completed.
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Nomenclature
A � ship motion amplitude

�A� � arbitrary matrix
C � helicopter suspension attachment point
D � ship displacement
F � applied force
F � applied force due to ship motion
G � differentiation quantity

�I� � identity matrix
J � helicopter mass moment of inertia or �sub-

scripts� blade segment moment of inertia
M � applied moment due to ship motion

�M� � model mass matrix
Q � applied force

�Q� � force vector
�R� � rotational matrix

S � sample equation
T � kinetic energy
U � potential energy
V � ship velocity

X ,Y ,Z � global inertial coordinates fixed in space or
distance in that direction

a � geometric constant
b � geometric constant

�b� � arbitrary vector
c � Suspension or blade segment damping

coefficient
d � length of ith segment of nth blade
g � acceleration due to gravity
k � suspension or segment spring stiffness

l1,2,r,cg � helicopter dimensions
m � mass of the helicopter body or �with sub-

scripts� blade segment
n1 � number of segments in port blade
n2 � number of segments in starboard blade

ndof � number of model degrees of freedom
q � model generalized coordinate

�q� � model generalized coordinate
t � time
v � geometric constant
w � geometric constant

x ,y ,z � local coordinates fixed to the helicopter or dis-
tance in that direction

�x� � arbitrary degree of freedom vector
� � equation of motion coefficient
� � equation of motion coefficient
� � equation of motion coefficient
� � equation of motion coefficient

� � model generalized coordinate - helicopter
orientation

� � model generalized coordinate - relative blade
segment angle


 � ship motion frequency
� � ship motion phase angle

Subscripts
C � quantity at point C on helicopter
Y � in the Y direction
Z � in the Z direction
i � embedded sum index
j � embedded sum index
k � embedded sum index

i ,n � of the ith blade segment of nth blade
k , j � of the kth ship dof and the jth frequency

component
p � generalized coordinate index

ship � related to ship
y � in the y direction
z � in the z direction
� � in the � direction

Appendix
Some geometric constant are defined as

v = �lcg
2 + 2lcglr + lr

2 + l1
2 �A1�

a = arctan� lcg + lr

l1
� �A2�

w = �lcg
2 + 2lcglr + lr

2 + l2
2 �A3�

b = arctan� lcg + lr

l2
� �A4�

Since they depend on predefined properties of the helicopter, de-
fining them in this way simplifies the subsequent equations.

The kinetic energy contributions are

T1 = 1
2m�ẎC − lcg�cos�����̇�2 + 1

2m�ŻC − lcg�sin�����̇�2 �A5�

T2 = 1
2J�̇2 �A6�

T3 = 1
2	

k=1

n1

mk,1��− 	
i=1

k �sin�� + 	
j=1

i

� j,1����̇ + 	
j=1

i

�̇ j,1�di,1

− v�̇ sin�� + a� + ẎC +
1

2�sin�� + 	
j=1

k

� j,1��
���̇ + 	

j=1

k

�̇ j,1�dk,1�2

+ �	
i=1

k �cos�� + 	
j=1

i

� j,1��
���̇ + 	

j=1

i

�̇ j,1�di,1 + v�̇ cos�� + a� + ŻC

−
1

2�cos�� + 	
j=1

k

� j,1����̇ + 	
j=1

k

�̇ j,1�dk,1�2� �A7�

T4 =
1

2	
k=1

n1

Jk,1��̇ + 	
j=1

k

�̇ j,1�2

�A8�
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T5 =
1

2	
k=1

n2

mk,2��	
i=1

k �sin�� + 	
j=1

i

� j,2����̇ + 	
j=1

i

�̇ j,2�di,2

− w�̇ sin�b − �� + ẎC −
1

2�sin�� + 	
j=1

k

� j,2��
���̇ + 	

j=1

k

�̇ j,2�dk,2�2

+ �− 	
i=1

k �cos�� + 	
j=1

i

� j,2��
���̇ + 	

j=1

i

�̇ j,2�di,2 − w�̇ cos�b − �� + ŻC

+
1

2�cos�� + 	
j=1

k

� j,2����̇ + 	
j=1

k

�̇ j,2�dk,2�2� �A9�

T6 =
1

2	
k=1

n2

Jk,2��̇ + 	
j=1

k

�̇ j,2�2

�A10�

The potential energy contributions are

U1 = 1
2kYYC

2 + 1
2k��2 + 1

2kZZC
2 �A11�

U2 = gm�lcg cos��� + ZC� �A12�

U3 = 	
k=1

n1 1

2
kk,1�k,1

2 �A13�

U4 = 	
k=1

n1

mk,1g�ZC + 	
i=1

k �sin�� + 	
j=1

i

� j,1��di,1 + v sin�� + a�

− 1
2�sin�� + 	

j=1

k

� j,1��dk,1� �A14�

U5 = 	
k=1

n2 1

2
kk,2�k,2

2 �A15�

U6 = 	
k=1

n2

mk,2g�ZC − 	
i=1

k �sin�� + 	
j=1

i

� j,2��di,2 + w sin�b − ��

+
1

2�sin�� + 	
j=1

k

� j,2��dk,2� �A16�
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A Novel Finite-Element–
Numerical-Integration Model for
Composite Laminates Supported
on Opposite Edges
An attempt is made here to devise a new methodology for an integrated stress analysis of
laminated composite plates wherein both in-plane and transverse stresses are evaluated
simultaneously. The method is based on the governing three-dimensional (3D) partial
differential equations (PDEs) of elasticity. A systematic procedure is developed for a case
when one of the two in-plane dimensions of the laminate is considered infinitely long (y
direction) with no changes in loading and boundary conditions in that direction. The
laminate could then be considered in a two-dimensional (2D) state of plane strain in x-z
plane. It is here that the governing 2D PDEs are transformed into a coupled system of
first-order ordinary differential equations (ODEs) in transverse z direction by introducing
partial discretization in the finite inplane direction x. The mathematical model thus re-
duces to solution of a boundary value problem (BVP) in the transverse z direction in
ODEs. This BVP is then transformed into a set of initial value problems (IVPs) so as to
use the available efficient and effective numerical integrators for them. Through thickness
displacement and stress fields at the finite element discrete nodes are observed to be in
excellent agreement with the elasticity solution. A few new results for cross-ply laminates
under clamped support conditions are also presented for future reference and also to
show the generality of the formulation. �DOI: 10.1115/1.2722770�

Keywords: plane-strain, partial discretization, laminate, boundary value problem, finite
element method, numerical integration method

1 Introduction

Composite materials possess ideal engineering properties and
therefore these materials are used in many engineering fields. A
three-dimensional �3D� elasticity solution of laminated composite
beams or plates or shells is extremely complex. Pagano �1–3�,
Srinivas and Rao �4�, and Srinivas et al. �5� have given flexure,
vibration, and buckling response of simply-supported rectangular
plates and laminates by analytically solving the governing bound-
ary value problem �BVP� defined by 3D partial differential equa-
tions �PDEs�. However, these solutions lack generality. Their so-
lutions have been used, over the last three decades, as benchmark
solutions by researchers involved in developing general numerical
techniques and also by those concerned with the range of appli-
cability of the approximate two-dimensional �2D� plate/shell and
one-dimensional �1D� beam/arch theories �6–23�. Accurate esti-
mation of interlaminar stresses is a major concern in the design of
laminated composites to avoid delamination. In the available ap-
proaches �24�, the in-plane stresses are first computed in the first
phase of any general laminate analysis. The transverse interlami-
nar stresses are then estimated by integrating the 3D elasticity
equilibrium equations in the second post-processing phase, but
serious computational and analytical problems are associated with
this second post-processing phase involving accuracy and incon-
sistency of mathematical model itself.

Taking a cue from the foregoing development, an attempt is
made here to extend the strategy of transforming the governing
system of PDEs to a system of ODEs for elastostatic problems

whose behavior is mathematically formulated as a two-point BVP
governed by a set of linear first-order ordinary differential equa-
tions �ODEs�

d

dz
y�z� = A�z�y�z� + p�z� �1�

in the domain z1�z�z2.
BVP in ODEs, not only describe one-dimensional �1D� elasto-

static problems exactly but also 2D and 3D problems approxi-
mately whose behavior is governed by a system of PDEs. Con-
ceptualizing a finite element �FE� discretization in the lamina
plane, a set of implicit first-order ODEs is obtained. The solution
vector y�z� of which consists of a set of primary dependent vari-
ables �stress components and the corresponding displacements on
the lamina plane� whose number equals the order of the PDE
system times the number of discrete FE mesh nodes. Availability
of efficient, accurate, and, above all, proven robust ODE numeri-
cal integrators for IVPs helps in obtaining the set of primary vari-
ables at all nodal points through the thickness. Ingenuity lies here
in transforming the BVP into a set of initial value problems �IVPs�
�25�. Furthermore, the secondary set of dependent variables over
the entire nodal set is simply computed by substitution of the
values of the primary variables on the right hand side of algebraic
expressions, node by node.

2 Partial Discretization Formulation
A laminate supported on two opposite edges x=0, a, and loaded

transversely by distributed load, which is independent of y is con-
sidered. The dimension of the laminate in the y direction is infi-
nite. The thickness h is composed of a number of isotropic and/or
orthotropic layers bonded together and whose principal material
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directions are coincident with the geometrical coordinate axis.
Under such a condition, the laminate is in a 2D state of plane
strain in x-z plane �Fig. 1�.

The 2D differential equations of equilibrium are

��x

�x
+

��zx

�z
+ Bx = 0

��xz

�x
+

��z

�z
+ Bz = 0 �2�

where Bx and Bz are the body forces per unit volume in x and z
directions, respectively.

The material constitute relations for each layer can be written as

��x

�z

�zx
� = �C11 C12 0

C21 C22 0

0 0 C33
�� �x

�z

�zx
� �3�

The stiffness coefficients Cij are the elastic constants derived by
setting �y =�xy =�yz=0 in the 3D material stiffness matrix and are
given in the Appendix. The general linear strain-displacement re-
lations in 2D can be written as,

�x =
�u

�x
, �z =

�w

�z
, and �zx =

�u

�z
+

�w

�x
�4�

Equations �2�–�4� have eight unknowns, u, w, �x, �z, �zx, �x, �z,
and �zx. It is to be noted that continuity of transverse stresses and
the displacement fields �Fig. 2� are the essential requirements for
the accurate analysis of layered components �1–3�. These condi-
tions are naturally enforced in the present formulation. Through a
simple algebraic manipulation of the above three sets of Eqs.
�2�–�4�, a system of PDEs involving four dependent variables
u ,w ,�zx ,�z are obtained as follows:

�u

�z
=

�zx

C33
−

�w

�x

�w

�z
=

1

C22
	�z − C21

�u

�x



��zx

�z
= 	− C11 + �C12C21

C22
�
 �2u

�x2 −
C12

C22

��z

�x
− Bx

��z

�z
= −

��zx

�x
− Bz �5�

This set of dependent variables is called a “primary set,” which is
naturally defined at a plane z=a constant, and the secondary de-

Fig. 3 Linear elements „concept of partial discritization…

Fig. 1 Laminate subjected to transverse loading

Fig. 2 Linear finite element with dependent variables
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pendent variable �x can simply be expressed as a function of the
primary set of variables as follows:

�x = �C11 −
C12C21

C22
� �u

�x
+

C12

C22
�z �6�

It is noted that the primary set of variables �u ,w ,�zx ,�z� is a
function of independent coordinates x and z. It is proposed to
carry out FE discretization in only the x direction such that the
discrete dependent vector y�z� will be a only function of indepen-
dent coordinate z, and a system of coupled discrete first-order
ODEs connecting all FE nodes results. This new formulation is
described below, first with reference to a two-noded linear ele-
ment in the x direction with mixed set of primary variables as
nodal degrees of freedom �Fig. 2�.

The approximate variation of displacements field over the ele-
ment domain along the longitudinal axis x can be written as

u  û�x,z� = u1�z�N1�x� + u2�z�N2�x�

w  ŵ�x,z� = w1�z�N1�x� + w2�z�N2�x� �7�

and from the basic relations of theory of elasticity it can be shown
that

�zx  �̂zx�x,z� = �zx1�z�N1�x� + �zx2�z�N2�x�

�z  �̂z�x,z� = �z1�z�N1�x� + �z2�z�N2�x� �8�

where N1=1− �x / le� and N1=x / le.
Substituting Eqs. �7� and �8� into Eq. �5�, the domain residuals

are obtained as

�û�x,z�
�z

+
�ŵ�x,z�

�x
−

�̂zx�x,z�
C33

= R1D�x�

�ŵ�x,z�
�z

+
C21

C22

�û�x,z�
�x

−
�̂z�x,z�

C22
= R2D�x�

��̂zx�x,z�
�z

+ �C11 −
C12C21

C22
� �2û�x,z�

�x2 +
C12

C22

��̂z�x,z�
�x

+ B̂x�x,z�

= R3D�x�

��̂z�x,z�
�z

+
��̂zx�x,z�

�x
+ B̂z�x,z� = R4D�x� �9�

The strong Bubnov-Galerkin weighted residual statements �26�
can then be written with the help of Eq. �9� as follows:

�
0

le

Ni�x�� �û�x,z�
�z

+
�ŵ�x,z�

�x
−

�̂zx�x,z�
C33

�dx = 0 �10�

�
0

le

Ni�x�� �ŵ�x,z�
�z

+
C21

C22

�û�x,z�
�x

−
�̂z�x,z�

C22
�dx = 0 �11�

�
0

le

Ni�x�	 ��̂zx�x,z�
�z

+ �C11 −
C12C21

C22
� �2û�x,z�

�x2 +
C12

C22

��̂z�x,z�
�x

+ B̂x�x,z�
dx = 0 �12�

�
0

le

Ni�x�� ��̂z�x,z�
�z

+
��̂zx�x,z�

�x
+ B̂z�x,z��dx = 0 �13�

Equation �12�, which contains a second-order derivative of û, is
replaced by its weak form with the help of integration by parts as
follows:

�
0

le

Ni�x�
��̂zx�x,z�

�z
dx −�

0

le dNi�x�
dx

�C11 −
C12C21

C22
� �û�x,z�

�x
dx

+�
0

le

Ni�x�
C12

C22

��̂z�x,z�
�x

dx + 	Ni�x��C11

−
C12C21

C22
� �û�x,z�

�x



0

le

+�
0

le

Ni�x�B̂x�x,z�dx = 0 �14�

On substitution for approximate functions from Eqs. �7� and �8�,
the following eight semi-discrete equations are obtained:

�
A11

e 0 0 0 A15
e 0 0 0

0 A22
e 0 0 0 A26

e 0 0

0 0 A33
e 0 0 0 A37

e 0

0 0 0 A44
e 0 0 0 A48

e

A51
e 0 0 0 A55

e 0 0 0

0 A62
e 0 0 0 A66

e 0 0

0 0 A73
e 0 0 0 A77

e 0

0 0 0 A84
e 0 0 0 A88

e

� d

dz�
u1

e�z�
w1

e�z�
�zx1

e �z�
�z1

e �z�
u2

e�z�
w2

e�z�
�zx2

e �z�
�z2

e �z�

�
= �

0 B12
e B13

e 0 0 B16
e B17

e 0

B21
e 0 0 B24

e B25
e 0 0 B28

e

B31
e 0 0 B34

e B35
e 0 0 B38

e

0 0 B43
e 0 0 0 B47

e 0

0 B52
e B53

e 0 0 B56
e B57

e 0

B61
e 0 0 B64

e B65
e 0 0 B68

e

B71
e 0 0 B74

e B75
e 0 0 B78

e

0 0 B83
e 0 0 0 B87

e 0

��
u1

e�z�
w1

e�z�
�zx1

e �z�
�z1

e �z�
u2

e�z�
w2

e�z�
�zx2

e �z�
�z2

e �z�

�
+�

0

0

p3
e

p4
e

0

0

p7
e

p8
e

�
which can be written in a compact form as

Table 1 Boundary conditions „BCs…

Group Edge
BCs on

displacement field BCs on stress field

A x=0 and a w=0 —
x=a /2 u=0 �zx=0
z=h /2 — �z= p�x�; �zx=0

z=−h /2 — �z=0; �zx=0
B x=0 and a w=0 and u=0 —

z=h /2 — �z= p�x�; �zx=0
z=−h /2 — �z=0; �zx=0
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Ae�x�
d

dz
ye�z� = Be�x,z�ye�z� + pe�x,z� �15�

The elements of matrices Ae�x�, Be�x ,z� and vector pe�x ,z� are
given in the Appendix. When the total x dimension is discretized
with n two-noded elements �Fig. 3�, then the semi-discrete system
of equation for the entire domain turns out to be

�
k=1

n

Ae�x�
d

dz
ye�z� = �

k=1

n

Be�x,z�ye�z� + �
k=1

n

pe�x,z�

or

A�x�
d

dz
y�z� = B�x,z�y�z� + p�x,z� �16�

Multiplication of Eq. �16� by �A�x��−1 on both sides results in

d

dz
y�z� = C�x,z�y�z� + f�x,z� �17�

where C�x ,z�= �A�x��−1B�x ,z� and f�x ,z�= �A�x��−1p�x ,z�.
Equation �17� defines the governing equations of a two-point

BVP in ODEs in the domain −�h /2��z� �h /2�. y�z� is an
m-dimensional �m=number of nodes�4� vector of dependent
variables, C�x ,z� is an m�m coefficient matrix �which is a func-
tion of element geometry along x and material properties variation

both in the x and z directions�, and f�x ,z� is an m-dimensional
vector of nonhomogeneous �loading� terms. Any m /2 elements of
y�z� are prescribed at the two ends, z=−�h /2� and h /2 as bound-
ary conditions. It is clearly seen that mixed and/or nonhomoge-
neous boundary conditions are easily admitted in this formulation.
The basic approach to the numerical integration of the BVP de-
fined by Eq. �17� is to transform the given BVP into a set of
IVPs—one particular �nonhomogeneous� and m /2 complimentary
�homogeneous�. Clearly, the reason behind this is the availability
of a number of successful and well-tested algorithms for numeri-
cal solution of IVPs in ODEs. The solution of the original BVP
defined by Eq. �17� is obtained by forming a linear combination of
one nonhomogeneous and m /2 homogeneous solutions so as to
satisfy the boundary conditions at z=h /2. This gives rise to a
system of m /2 linear algebraic equations, the solution of which
determines the unknown m /2 components of the vector of initial
values y�z�. Then a final numerical integration of Eq. �17� with
completely known initial vector of dependent variables y�z� pro-
duces the desired results. It is intended here to extend the appli-
cability of this procedure, which is documented by Kant and
Ramesh �25�.

3 Numerical Studies
A two-noded linear element with mixed �displacements/

stresses� degrees of freedom is employed in the present numerical

Fig. 4 Convergence of „a… maximum transverse shear stress „�zx… and „b… mid-
plane transverse displacement „w̄… with number of elements for a
0 deg/90 deg/0 deg laminate under cylindrical bending
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study involving both validation and solution of new problems. A
computer code incorporating the present methodology was devel-
oped in FORTRAN-90. The accuracy of the proposed new formula-
tion for layered composites is established by comparison of the
present numerical results with that of elasticity solution �1� and
also with others. In all the examples, the layer elastic coefficients
are those of a unidirectional graphite/epoxy composite

EL = 25 � 106 psi; ET = 106 psi; GLT = 0.5 � 106 psi

GTT = 0.2 � 106 psi; �LT = �TT = 0.25

where subscripts L and T refer to the fiber direction and trans-
verse direction perpendicular to fiber direction.

Two support conditions on opposite edges considered here are
tabulated in Table 1. All laminates are subjected to sinusoidal
transverse load on their top surface. The intensity of sinusoidal
loading can be expressed as

p�x� = p0 sin
�x

a
�18�

where p0 represents the peak intensity of load.
The dependent quantities are nondimensionalized in the follow-

ing manner:

Table 2 Comparison of normalized transverse displacement „w̄…, in-plane normal stress „�x…,
and transverse shear stress „�zx… of two-layered „0 deg/90 deg… unsymmetric laminates under
cylindrical bending

Aspect
ratio Source

Stresses/displacement

�x

�a /2 ,h /2�
�x

�a /2 ,−h /2�
�zx

�0,max�
w̄

�a /2 ,0�

4 Partial FEM 0.2325
��3.0037�

�1.8142
��3.3355�

0.6983
�2.6157�

4.6826
��0.2705�

Pagano �1�a 0.2397 �1.8768 0.6805 4.6953
Enhblom and

Ochoa �9�
0.1864 �1.7371 N/A N/A

Lu and Liu �13� 0.2232 �1.8750 N/A 4.7773
10 Partial FEM 0.1952

��1.5633�
�1.7403

��1.4162�
0.7343

�1.0319�
2.9503

��0.1185�
Pagano �1�a 0.1983 �1.7653 0.7268 2.9538

Lu and Liu �13� 0.2000 �1.7500 N/A 3.0000
20 Partial FEM 0.1890

��1.3570�
�1.7241

��1.4405�
0.7432

�1.1432�
2.6980

��0.1739�
Pagano �1�a 0.1916 �1.7493 0.7348 2.7027

50 Partial FEM 0.1866
��1.6341�

�1.7196
��1.4500�

0.7465
�1.2752�

2.6267
��0.2127�

Pagano �1�a 0.1897 �1.7449 0.7371 2.6323

aThe analytical solution given in this paper is programed by the present authors and numerical results for various aspect ratios,
not available in the original paper are obtained and presented here.
N/A=results are not available.

Table 3 Comparison of normalized transverse displacement „w̄…, in-plane normal stress „�x…,
and transverse shear stress „�zx… of three-layered „0 deg/90 deg/0 deg… symmetric laminates
under cylindrical bending

Aspect
ratio Source

Stresses/displacement

�x

�a /2 ,h /2�
�x

�a /2 ,−h /2�
�zx

�0,max�
w̄

�a /2 ,0�

4 Partial FEM 1.1211
��4.6278�

�1.0782
��4.7105�

0.4149
�4.8522�

2.9134
�0.9074�

Pagano �1�a 1.1755 �1.1315 0.3957 2.8872
Spilker �8� N/A N/A 0.3909 2.8410

Enhblom and
Ochoa �9�

0.6256 �0.6318 0.4434 N/A

10 Partial FEM 0.7216
��2.049�

�0.7211
��2.0644�

0.4285
�1.0851�

0.9308
��0.0859�

Pagano �1�a 0.7367 �0.7363 0.4239 0.9316
Spilker �8� N/A N/A 0.4529 0.9312

Enhblom and
Ochoa �9�

0.6373 �0.6373 0.4459 N/A

20 Partial FEM 0.6439
��2.1280�

�0.6440
��2.1425�

0.4431
�1.3031�

0.6152
��0.3240�

Pagano �1�a 0.6579 �0.6581 0.4374 0.6172
50 Partial FEM 0.6211

��2.1581�
�0.6211

��2.1581�
0.4483

�1.5402�
0.5246

��0.4554�
Pagano �1�a 0.6348 �0.6348 0.4415 0.5270

aThe analytical solution given in this paper is programmed by the present authors and numerical results for various aspect ratios,
not available in the original paper are obtained and presented here.
N/A=results are not available.
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z̄ =
z

h
; ū =

E2u�0,z�
hp0

; w̄ =
100E2h3w�a/2,0�

p0a4

�x =
h2�x�a/2,0�

p0a2 ; �z =
�z�a/2,z�

p0
; �zx =

h�xz�0,z�
p0a

�19�

in which a bar over a variable defines its nondimensionalized
value and the percentage error between present and elasticity so-
lution �1� is calculated as

% error =
Present analysis − Elasticity solution

Elasticity solution
� 100 �20�

and these are presented in parentheses in Table 1.
A convergence study on number of elements along the x direc-

tion and number of steps required for numerical integration in
thickness direction is performed first. The method was found to
yield converged solution for a laminates in-plane strain with
12–16 elements in the x direction and with 16–20 steps in the
thickness, z direction. Convergence plot of midplane transverse
displacement �w̄� and maximum transverse shear stress ��zx� with
the number of elements in the x direction are shown graphically
for the symmetric �0 deg/90 deg/0 deg� laminates in Fig. 4 for
a /h ratio of 10.

Group A. The examples considered in this group are selected to
establish the accuracy of stress predictions through the thickness
by the present method. A two-layer unsymmetric �0 deg/90 deg�
and a three-layer symmetric �0 deg/90 deg/0 deg� cross-ply
square laminates, simply supported on opposite edges in the x
direction are considered for this purpose. Boundary conditions are
specified in Table 1. The results obtained through present analysis
are compared to the 3D elasticity solution given by Pagano �1�
and also with available results in the literature �8,9,13� for cylin-
drical bending. Numerical results for a /h ratios of 4, 10, 20, and
50 are given in Tables 2 and 3 for both configurations. The varia-
tion of midplane transverse displacement w̄�a /2 ,0� with different
a /h ratios is shown in Fig. 5. Through thickness variation of nor-
malized in-plane normal stress ��x�, inplane displacement �ū�,
transverse shear stress ��xz� and transverse normal stress ��z� for
a /h ratio of 4 are presented in Figs. 6 and 7 for 0 deg/90 deg
unsymmetric laminate and 0 deg/90 deg/0 deg symmetric lami-
nate, respectively. Moreover, through thickness variation of trans-

verse displacement �w̄� is depicted in Fig. 8. Excellent agreement
is seen between the present and the elasticity solution.

Group B. The examples considered under this group are an
extension of group A for clamped end conditions to show the
ability of the present formulation to handle problems with general
boundary conditions and high stress gradients. The lamination
schemes, material properties and geometrical details are kept
same as group A. Boundary conditions are specified in Table 1.
Numerical results for normal in-plane stress ��x� at top and bot-
tom, transverse shear stress ��xz�, and transverse displacement �w̄�
at midplane with different a /h ratios are presented in Table 4 for
both 0 deg/90 deg unsymmetric and 0 deg/90 deg/0 deg sym-
metric laminates. The normal in-plane stress ��x� and transverse
shear stress ��xz� variations through thickness of laminate with
a /h ratio of 4 are shown graphically in Figs. 9 and 10 for
0 deg/90 deg unsymmetric and 0 deg/90 deg/0 deg symmetric
laminates, respectively. These results should serve as benchmark
solutions for future investigation.

4 Concluding Remarks
A novel partial discretization method with mixed degrees of

freedom has been proposed in this paper. It ensures the fundamen-
tal elasticity relationship between stress, strain, and displacement
fields within the elastic continuum and implicitly maintains the
continuity of displacements and transverse stresses at the laminate
interface. It is first of its kind of a mixed partial FE model that is
based on the solution of a two-point BVP through the thickness of
laminates. Good agreement of the results with the elasticity solu-
tion suggests that the method is extremely accurate. Generality of
the method is proven by incorporation of clamped edge conditions
at x=0, a. The most significant advantage of the present formula-
tion lies in the fact that both displacement and transverse inter-
laminar stresses are simultaneously evaluated at the finite element
node with the same degree of accuracy through a numerical inte-
gration process and thus eliminating the post-processing module
that is required in other analytical models for calculation of trans-
verse stresses from in-plane stresses.

Fig. 5 Variation of normalized transverse displacement „w̄… with respect to a /h
ratios of 0 deg/90 deg unsymmetric laminates under cylindrical bending
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Appendix
The stiffness coefficients Cij

C11 =
E1�1 − 	23	32�




C12 = C21 =
E1�	21 + 	31	23�




C22 =
E2�1 − 	13	31�




C33 = Gxz

were 
= �1−	12	21−	13	31−	23	32−2	12	31	23�, Ei=Young’s
moduli of lamina in the material principle direction �i=1,2 ,3�,
and 	ij =generalized Poisson’s ratios of lamina �i , j=1,2 ,3�.

Elements of matrix Ae�x� are

A11
e = A22

e = A33
e = A44

e = A55
e = A66

e = A77
e = A88

e =�
0

le

N1�x�N1�x�dx

=
le

3

A15
e = A26

e = A37
e = A48

e = A51
e = A62

e = A73
e = A84

e =�
0

le

N1�x�N2�x�dx

=
le

6

Fig. 6 Variation of normalized „a… in-plane normal stress �x, „b… in-plane displacement ū, „c…
transverse shear stress �zx, and „d… transverse normal stress �z through thickness of
0 deg/90 deg unsymmetric laminate under cylindrical bending
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Elements of matrix Be�x ,z� are

B12
e = −�

0

le

N1�x�
dN1�x�

dx
dx =

1

2

B13
e =

1

C33
�

0

le

N1�x�N1�x�dx =
le

3C33

B16
e = −�

0

le

N1�x�
dN2�x�

dx
dx = −

1

2

B17
e =

1

C33
�

0

le

N1�x�N2�x�dx =
le

6C33

B21
e = −

C21

C22
�

0

le

N1�x�
dN1�x�

dx
dx =

C31

2C22

B24
e =

1

C22
�

0

le

N1�x�N1�x�dx =
le

3C22

B25
e = −

C21

C22
�

0

le

N1�x�
dN2�x�

dx
dx = −

C21

2C22

B28
e =

1

C22
�

0

le

N1�x�N2�x�dx =
le

6C22

B31
e = �C11 −

C12C21

C22
��

0

le dN1�x�
dx

dN1�x�
dx

dx = �C11 −
C12C21

C22
� 1

le

B34
e = −

C12

C22
�

0

le

N1
dN1�x�

dx
dx =

C12

2C22

Fig. 7 Variation of normalized „a… inplane normal stress �x, „b… inplane displacement ū, „c…
transverse shear stress �zx, and „d… transverse normal stress �z through thickness of
0 deg/90 deg/0 deg symmetric laminate under cylindrical bending
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B35
e = �C11 −

C12C21

C22
��

0

le dN1�x�
dx

dN2�x�
dx

dx = − �C11 −
C12C21

C22
� 1

le

B38
e = −

C12

C22
�

0

le

N1�x�
dN2�x�

dx
dx = −

C12

2C22

B43
e = −�

0

le

N1�x�
dN1�x�

dx
dx =

1

2

B47
e = −�

0

le

N1�x�
dN2�x�

dx
dx = −

1

2

B52
e = −�

0

le

N2�x�
dN1�x�

dx
dx =

1

2

B53
e =

1

C33
�

0

le

N2�x�N1�x�dx =
le

6C33

B56
e = −�

0

le

N2�x�
dN2�x�

dx
dx = −

1

2

B57
e =

1

C33
�

0

le

N2�x�N2�x�dx =
le

3C33

B61
e = −

C21

C22
�

0

le

N2�x�
dN1�x�

dx
dx =

C21

2C22

B64
e =

1

C22
�

0

le

N2�x�N1�x�dx =
le

6C22

B65
e = −

C21

C22
�

0

le

N2�x�
dN2

dx
�x�dx = −

C21

2C22

B68
e =

1

C22
�

0

le

N2�x�N2�x�dx =
le

3C22

Table 4 Normalized transverse displacement „w̄…, in-plane normal stress „�x…, and transverse shear stress „�zx… of laminates
under clamped support condition in-plane strain condition

Aspect
ratio Source

Stresses/displacement

0 deg/90 deg unsymmetric laminate 0 deg/90 deg/0 deg symmetric laminate

�x

�a /2 ,h /2�
�x

�a /2 ,−h /2�
�zx

�0,max�
w̄

�a /2 ,0�
�x

�a /2 ,h /2�
�x

�a /2 ,−h /2�
�zx

�0,max�
w̄

�a /2 ,0�

4 Partial FEM 0.1241 �0.8041 1.4232 2.7930 0.5511 �0.5166 0.8833 2.0886
10 Partial FEM 0.0909 �0.6697 2.8418 1.0623 0.3320 �0.3304 1.5079 0.4898
20 Partial FEM 0.0739 �0.5956 2.6678 0.6792 0.2428 �0.2424 1.5624 0.2007
50 Partial FEM 0.0649 �0.5746 2.3424 0.5225 0.2065 �0.2064 1.6142 0.1083

Fig. 8 Variation of normalized transverse displacement w̄ through thickness of „a…
0 deg/90 deg unsymmetric and „b… 0 deg/90 deg/0 deg symmetric laminates under cylindrical
bending
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Fig. 9 Variation of normalized „a… in-plane normal stress �x and „b… transverse shear stress �zx
through thickness of 0 deg/90 deg unsymmetric laminate for clamped supported boundary
conditions

Fig. 10 Variation of normalized „a… in-plane normal stress �x and „b… transverse shear stress
�zx through thickness of 0 deg/90 deg/0 deg symmetric laminate for clamped supported
boundary conditions
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B71
e = �C11 −

C12C21

C22
��

0

le dN2�x�
dx

dN1�x�
dx

dx = − �C11 −
C12C21

C22
� 1

le

B74
e = −

C12

C22
�

0

le

N2�x�
dN1�x�

dx
dx =

C12

2C22

B75
e = �C11 −

C12C21

C22
��

0

le dN2�x�
dx

dN2�x�
dx

dx = �C11 −
C12C21

C22
� 1

le

B78
e = −

C12

C22
�

l1

l2

N2�x�
dN2�x�

dx
dx = −

C12

2C22

B83
e = −�

0

le

N2�x�
dN1�x�

dx
dx =

1

2

B87
e = −�

0

le

N2�x�
dN2�x�

dx
dx = −

1

2

Elements of vector pe�x ,z� are

p3
e = −�

0

le

N1�x�B̂x�x,z�dx − 	N1�x��C11 −
C12C21

C22
�dû�x,z�

dx



0

le

p4
e = −�

0

le

N1�x�B̂z�x,z�dx

p7
e = −�

0

le

N2�x�B̂x�x,z�dx − 	N2�x��C11 −
C12C21

C22
�dû�x,z�

dx



0

le

p8
e = −�

0

le

N2�x�B̂z�x,z�dx
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Fatigue Modeling for Elastic
Materials With Statistically
Distributed Defects
The paper is devoted to formulation and analysis of a new model of structural fatigue
that is a direct extension of the model of contact fatigue developed by Kudish (2000,
STLE Tribol. Trans., 43, pp. 711–721). The model is different from other published
models of structural fatigue (Collins, J. A., 1993, Failure of Materials and Mechanical
Design: Analysis, Prediction, Prevention, 2nd ed., Wiley, New York) in a number of
aspects such as statistical approach to material defects, stress analysis, etc. The model is
based on fracture mechanics and fatigue crack propagation. The model takes into ac-
count local stress distribution, initial statistical distribution of defects versus their size,
crack location, and orientation, and material fatigue resistance parameters. The assump-
tions used for the new model derivation are stated clearly and their validity is discussed.
The model considers the kinetics of crack distribution by taking into account the fact that
the crack distribution varies with the number of applied loading cycles due to crack
growth. A qualitative and quantitative parametric analysis of the model is performed.
Some analytical formulas for fatigue life as a function of the initial defect distribution,
material fatigue resistance, and stress state are obtained. Examples of application of the
model to predicting fatigue of beam bending and torsion and contact fatigue for tapered
bearings is presented. �DOI: 10.1115/1.2722771�

Keywords: fatigue, statistical analysis, crack propagation, life prediction methods,
torsion, bending, rolling contact

1 Model Development
We will consider a three-dimensional model assuming that the

stress state of the material is given as a function of the number of
loading cycles N and the coordinates �x ,y ,z�. The coordinates
�x ,y ,z� are introduced in such a way that the x- and y-axes are
directed along the material surface, the z axis is directed perpen-
dicular to the material surface.

1.1 Initial Statistical Defect Distribution. Experiments have
demonstrated that structural fatigue in metals is due to the pres-
ence of defects such as nonmetallic inclusions, carbides, etc. �see
�1,2��. In contact fatigue studies, Dudragne et al. �3� and Mu-
rakami et al. �4� �see Tables 1 and 2 in �4�� have stated that in their
tests all contact fatigue failures are initiated at subsurface nonme-
tallic inclusions. Spektor et al. �5� have experimentally showed
that the main source of fatigue cracks in bearings is oxide inclu-
sions. In clean steels, fatigue cracks may originate at carbide sites
or at grain boundaries. In summary, fatigue cracks originate at
different material defects which, in most cases, for the purpose of
fatigue life prediction can be treated as small fatigue cracks �see
review by Kudish and Burris �6��.

In accordance with practice, we will assume that the material
defects are far from each other and do not interact. Suppose there
is a characteristic size L� in the material that is determined by the
typical variations of the material stresses and surface geometry.
Let us also assume that there is a size Lf in material such that
Ld�Lf �L�, where Ld is the typical distance between material
defects. In other words, we will assume that the defect population
in any of such volumes Lf

3 is large enough to ensure an adequate
statistical representation of the phenomenon. By doing so, we as-
sume that any parameter variations on the scale of Lf are indistin-

guishable for the purposes of the fatigue analysis and that any
volume Lf

3 can be represented by its center; i.e., a point �x ,y ,z�.
Therefore, we can assume that there is an initial statistical defect
distribution in the material. For the purpose of further analysis, we
will replace each defect by a penny-shaped crack with a diameter
approximately equal to the diameter of the defect �see further and
�6�� or by a semi-circular shaped surface crack. The usage of
penny-shaped subsurface and semi-circular shaped surface cracks
is advantageous to our analysis due to the fact that in the accepted
approximation the cracks maintain their shape. The orientation of
these cracks will be considered later. The initial statistical distri-
bution is described by the probabilistic density function
f�0,x ,y ,z , l0�, such that f�0,x ,y ,z , l0�dl0dxdydz is the number of
defects with the radii between l0 and l0+dl0 in the volume dxdydz.
The defect distribution f�0,x ,y ,z , l0� represents the local charac-
teristic of the material defectiveness. The model can be developed
for any particular initial distribution f�0,x ,y ,z , l0�. Some experi-
mental studies �7� show that a distribution of nonmetallic inclu-
sions versus their size resembles a log-normal one. The model
analysis can be simplified �see below� for a log-normal initial
defect distribution f�0,x ,y ,z , l0� versus the defect initial radius l

f�0,x,y,z,l0� = 0, l0 � 0,
�1�

f�0,x,y,z,l0� =
��0,x,y,z�

�2��1/2�lnl0
exp�−

1

2
� ln�l0� − �ln

�ln
�2�, l0 � 0

where ��0,x ,y ,z� is the initial crack volume density while �ln and
�ln are the mean and standard deviation of crack radii.

1.2 Fracture Mechanics and Stress Intensity Factors. In
experimental studies of steels, including bearing ones, it is estab-
lished that the crack initiation stage is much shorter than the crack
propagation stage �see �8–12��. Soon after cycling loading starts,
small fatigue cracks are initiated near material oxide inclusions
�see �6��. In the case of very small oxides, fatigue cracks may
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initiate near carbides or other structural defects.
The fatigue process in material starts as accumulation of dislo-

cations near defects which rapidly grow into microcracks �see �6��
as most of the plastic deformations of the material occur during
the first few loading cycles. As the linear fracture mechanics
�LEFM� is a natural extension of the dislocation theory, LEFM
can be effectively used to describe the mechanisms controlling
fatigue. Data on stresses near voids and inclusions ��13,14�� indi-
cate that, even when a crack size is small in comparison with the
adjacent inclusion/void, the stress intensity factors at the crack
tips/edges can be reasonably well approximated by the stress in-
tensity factors for cracks of combined size of the inclusion/void
and the adjacent small cracks. Therefore, for the purpose of stress
intensity factor analysis, such combined structures of inclusions
and cracks can be replaced by equivalent cracks of slightly larger
size. One can assume that in f�0,x ,y ,z , l0�, the variable l0 repre-
sents crack radius equal to about 1.1–1.2 of the inclusion radius.

The next major assumption employed in the model is that
LEFM for quasi-brittle elastic materials is applicable to the analy-
sis of fatigue cracks. To verify the above assumption, the radius rp
of the plasticity zone at a crack tip has to be much smaller than the
crack radius l. For a plane stress state we have

2rp

l
� 1, rp =

1

2�
� k1

�p
�2

�2�

where k1 is the normal stress intensity factor at the crack edge and
�p is the material yield stress.

In most cases of structural fatigue, the assumptions of LEFM
for quasi-brittle elastic materials hold well during most of the
material fatigue life while fatigue cracks are small. A verification
of inequality �2� for cracks under typical conditions for contact
fatigue is given by Kudish in �15�. Therefore, for small cracks the
assumption 2rp / l�1 holds and the methods of quasi-brittle frac-
ture mechanics can be applied. For larger cracks with the stress
intensity factor k1	kf �kf =material fracture toughness� the latter
inequality can get violated. However, as it is shown below, the
crack propagation rate is much higher for larger cracks than for
smaller ones and, therefore, during almost the entire fatigue pro-
cess cracks remain small and their behavior can be considered
based on LEFM for quasi-brittle materials.

Let us assume that the material contains a number of cracks that
are modeled by penny-shaped cuts. According to LEFM, the stress
intensity factors at the edge of a single crack can be represented in
the form

k1 = F1��,	��1��l�1/2, k2 = F2��,	��1��l�1/2,
�3�

k3 = F3��,	��1��l�1/2

where �1 is the maximum of the local principal tensile stress, l is
the crack radius, F1�� ,	�, F2�� ,	�, and F3�� ,	� are certain func-
tions of the crack orientation angles � and 	 with respect to the
xy-plane and some other stresses and geometric parameters de-
scribing the particular crack location. It is well known �see
�16–19�� that for “small cracks” functions F1�� ,	�, F2�� ,	�, and
F3�� ,	� are practically independent of l. The notion of “small
cracks” includes surface �semi-circular shaped� cracks �for which
F1, F2, and F3 are independent of l� and cracks that are far from
the material surface in comparison with their radius l.

1.3 Direction of Fatigue Crack Propagation. The resultant
stress field in material is formed by stresses �x�N ,x ,y ,z�,
�y�N ,x ,y ,z�, �z�N ,x ,y ,z�, 
xz�N ,x ,y ,z�, 
xy�N ,x ,y ,z�, and

zy�N ,x ,y ,z�. There are regions in the material subjected to tensile
stress and other regions subjected to compressive stress. Concep-
tually, there is no difference between the phenomena of structural
and contact fatigue as the local response of the loaded material to
the same stress in both cases is the same. What is different be-
tween these two cases is the stress distribution. As long as the

stress levels do not exceed the limits of applicability of the quasi-
brittle linear fracture mechanics when plastic zones at crack edges
are small, the rest of the material behaves like an elastic solid. The
actual stress distributions in cases of structural and contact fatigue
are taken into proper account. In both cases there are zones with
tensile stresses in material. In contact interactions where compres-
sive stress is usually dominant there are still regions in material
subjected to tensile stress caused by contact frictional stress. For
contact fatigue and even relatively high compressive residual
stress the existence of zones in material with tensile stress is
shown by Kudish in �19,20�.

It is widely accepted that fatigue cracks are initiated by shear
stresses. Experimental and theoretical studies suggest �see �6��
that soon after initiation, fatigue cracks propagate in the direction
perpendicular to the local maximum tensile �principal� stress.
Therefore, we will assume that fatigue is caused by propagation of
penny-shaped subsurface and semi-circular shaped surface cracks
under the action of principal maximum tensile stresses. On a plane
perpendicular to a principal stress, the shear stresses are equal to
zero, i.e., the shear stress intensity factors k2=k3=0. Therefore, to
find the plane of fatigue crack propagation �i.e., the orientation
angles � and �� it is necessary to find the direction of the maxi-
mum principal tensile stress. The latter is equivalent to the solu-
tion of the equations

k2�N,�,�,l,x,y,z� = 0, k3�N,�,�,l,x,y,z� = 0 �4�
It is important to remember that for the most part of their lives,

fatigue cracks remain small. Equations �4� and the fact that for
small cracks, k20=k2l−1/2 and k30=k3l−1/2 are independent from N
and l lead to the conclusion that for cyclic loading with constant
amplitude, cracks maintain their shape and the angles � and �
characterizing the plane of fatigue crack growth are independent
from the number of loading cycles N and the crack radius l.
Therefore, � and � are functions of only crack location; i.e., �
=��x ,y ,z� and �=��x ,y ,z�. For most stress fields �excluding
stress fields with special symmetry�, at any point �x ,y ,z�, it is
possible to find several sets of solutions ��m ,�m� to Eqs. �4�. The
crack propagation angles � and � are determined by one of these
sets of angles ��n ,�n� for which the normal stress intensity factor
k1�N , l ,x ,y ,z� is maximal.

1.4 Crack Propagation Calculations. Propagation of a fa-
tigue crack subjected to only normal tensile stress can be de-
scribed by the initial-value problem

dl

dN
= F�l,maxT�k1�,kth,kf�, 
l
N=0 = l0 �5�

where F is a given function that may depend on the parameters of
the material microstructure, and kth and kf are the material stress
intensity threshold and fracture toughness, respectively. In Eq. �5�
the maximum is taken over a loading cycle T. Equation �5� should
be solved at every material point of the stressed volume V at
which maxT�k1��kth. A typical graph of crack propagation rate
dl /dN versus l is schematically presented in Fig. 1. It is clear from
the graph that there are three distinct stages of crack development:
�a� growth of small cracks, �b� propagation of well developed
cracks, and �c� explosive and, usually, unstable growth of large
cracks. The phase of small crack growth is the slowest one and it
represents the main portion of the entire crack life. That usually
causes confusion about the duration of small crack initiation and
propagation phases. The next phase, propagation of well devel-
oped cracks, usually takes significantly less time than the phase of
small crack growth. Finally, the explosive crack growth takes al-
most no time.

A number of crack propagation equations of type �5� are ana-
lyzed by Yarema �21�. Any of these equations can be used in the
model to describe fatigue crack propagation. The fatigue threshold
kth was introduced solely to reflect the situations in which for
sufficiently small applied stresses, fatigue failure is not observed.
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There is no physical mechanism behind the fatigue threshold. The
mechanism of fatigue retardation can be provided by residual
stress. The sufficiently high compressive residual stress may arrest
fatigue crack growth which is consistent with the purpose of fa-
tigue threshold introduction. Therefore, fatigue threshold kth is an
artificial substitution for compressive residual stress. Simulta-
neous consideration of compressive residual stress and fatigue
threshold represents “double dipping” as both of them serve the
same purpose—arresting growth of fatigue cracks. The fatigue
threshold is not a material constant but it is a function of numer-
ous parameters, among which are the parameters of material plas-
tic and heat treatment and some kind of averaged level of residual
stress distribution. The inadequacy of the notion of fatigue thresh-
old in application to bearing steels was experimentally demon-
strated by Shimizu in recent papers �22,23�. He showed experi-
mentally that in bearing steels, the material fatigue threshold does
not exist, i.e., kth=0, while for structural steels it seems to be
positive. Summarizing the above discussion, the simplest and con-
sistent way to consider propagation of fatigue cracks is to assume
that kth=0. By taking into account the residual stress we avoid the
above-mentioned effect of double dipping. For kth=0, Eq. �5� can
be used in the Paris’ form

dl

dN
= g0�maxT kl�n, 
l
N=0 = l0 �6�

where g0 and n are the parameters of material fatigue resistance
and l0 is the crack initial radius.

Assuming that the amplitude of cyclic loading is constant and
taking into account the fact that for small cracks k10=k1l−1/2 is
independent from l, the solution of the initial-value problem �6�
can be obtained in the form

l = l0�1 − N�n

2
− 1�g0�maxT k10�n/l0

�2−n�/2�2/�2−n�

, n � 2 �7�

It is necessary to note that in material

�n

2
− 1�g0�maxT k10�n/l0

�2−n�/2  1 �8�

Based on Eq. �7�, one can formally determine the aforementioned
phases of crack development. Namely, the phase of small crack
growth is described by the relation

N  l0
�2−n�/2��n

2
− 1�g0�maxT k10�n�−1

�9�

the phase of well developed crack propagation is represented by

N 	 l0
�2−n�/2��n

2
− 1�g0�maxT k10�n�−1

�10�

and, finally, the phase of crack explosive growth is determined by

N  l0
�2−n�/2��n

2
− 1�g0�maxT k10�n�−1

�11�

In Eq. �10�, N is of the same order of magnitude as the expression
on the right-hand side but is not necessarily numerically close to
it; in Eq. �11�, N is approximately equal to the expression on the
right-hand side. It is clear from Eqs. �8�–�11� that it takes many
loading cycles for a small crack to grow into a well developed
crack. Equations �8�, �10�, and �11� show that for a well developed
crack, it takes fewer loading cycles to grow to a critical crack with
radius lk= �kf /k10�2 for which k1=kf. According to Eq. �11�, the
phase of explosive crack growth takes just a few loading cycles.

Based on this analysis, it is clear that the number of loading
cycles needed for a crack to reach its critical radius is almost
independent from the material fracture toughness kf �see below�.
For further analysis it is necessary to determine the crack initial
radius l0k which after N loading cycles reaches the critical size of
lk. Equation �7� provides the solution

l0k = �lk
�2−n�/2 + N�n

2
− 1�g0�maxT k10�n�2/�2−n�

, lk = �kf/k10�2

�12�

where l0k depends on N, x, y, and z. Obviously, for n�2 and fixed
x, y, and z, the value of l0k is a decreasing function of N.

It is important to keep in mind that K=maxT�k10� is a function
of x, y, and z. Obviously, if K�x1 ,y1 ,z1��K�x2 ,y2 ,z2�, then
lk�N ,x1 ,y1 ,z1�= �kf /K�x1 ,y1 ,z1��2� �kf /K�x2 ,y2 ,z2��2

= lk�N ,x2 ,y2 ,z2�. For n�2 and N�0 from Eq. �12�, it follows
that

l0k�N,x1,y1,z1� � l0k�N,x2,y2,z2� if K�x1,y1,z1� � K�x2,y2,z2�
�13�

Thus, l0k�N ,x ,y ,z� is minimal for maximal k10�x ,y ,z�, which, in
turn, occurs where the tensile stress reaches its maximum.

2 Crack Statistics
To describe crack statistics after the crack initiation phase is

over, it is necessary to make certain assumptions. The simplest
assumptions of this kind are: the existing cracks do not heal and
new cracks are not created. In other words, the number of cracks
in any material volume remains constant in time. This leads to the
equation

f�N,x,y,z,l�dl = f�0,x,y,z,l0�dl0 �14�
which being solved for the crack distribution function
f�N ,x ,y ,z , l� gives

f�N,x,y,z,l� = f�0,x,y,z,l0�
dl0

dl
�15�

where l0 and dl0 /dl as functions of N and l can be obtained from
the solution of Eq. �7�. To give a simple illustration of the crack
distribution f�N ,x ,y ,z , l� behavior; let us use Paris’ law �6� for
crack propagation. From Eq. �7� one then gets

l0 = �l�2−n�/2 + N�n

2
− 1�g0�maxT k10�n�2/�2−n�

,

�16�
dl0

dl
= �1 + N�n

2
− 1�g0�maxT k10�nl�n−2�/2�n/�n−2�

Equations �15� and �16� lead to the expression for the crack dis-
tribution function f after N loading cycles

Fig. 1 Schematic graph of crack propagation rate dl /dN ver-
sus crack radius/size l
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f�N,x,y,z,l� =
f�0,x,y,z,l0�N,l��

�1 + N�n

2
− 1�g0�maxT k10�nl�n−2�/2�n/�n−2�

�17�

where l0�N , l� is determined by the first of Eqs. �16�. If N2�N1
�0 then f�N2 ,x ,y ,z , l� can be obtained from f�N1 ,x ,y ,z , l� by a
corresponding stretching of this distribution along the l- and
f-axes. Obviously, for N=N2�N1, the crack distribution is wider
than the one for N=N1. A schematic view of such a distribution
evolution with N is given in Fig. 2. It is worth noting that in spite
of the appearance caused by the logarithmic l-axis, the area under
the curves is conserved �see Eq. �14��.

A number of important conclusions can be made based on Eq.
�17�. Namely, the crack distribution function f�N ,x ,y ,z , l� de-
pends on the initial crack distribution f�0,x ,y ,z , l0� and changes
with the number of applied loading cycles N in such a way that
the crack volume density ��N ,x ,y ,z� remains constant. Therefore,
it is safe to assume that the crack distribution f�N ,x ,y ,z , l�
changes with the number of loading cycles N. However, all fa-
tigue models that take into account material defect distribution
implicitly assume that the defect distribution does not change with
the number of loading cycles.

2.1 Local Fatigue Damage Accumulation. It is clear that if
at a certain point �x ,y ,z� after N loading cycles radii of all cracks
l� lk, then there is no damage at this point and the local survival
probability p�N ,x ,y ,z�=1. On the other hand, if at this point after
N loading cycles radii of all cracks l� lk, then all cracks reached
the critical size, the material at this point is completely damaged,
and p=0. It is reasonable to assume that the material local sur-
vival probability p�N ,x ,y ,z� is a certain monotonic measure of
the portion of cracks with radius l below the critical radius lk.
Therefore, p�N ,x ,y ,z� can be represented by the following ex-
pressions

p�N,x,y,z� =
1

�
�

0

lk

f�N,x,y,z,l�dl if f�0,x,y,z,l0� � 0;

p�N,x,y,z� = 1 otherwise
�18�

� = ��N,x,y,z� =�
0

�

f�N,x,y,z,l�dl, ��N,x,y,z� = ��0,x,y,z�

Equations �18� determine the material local �at �x ,y ,z�� survival
probability after N loading cycles as a ratio of the number of
fatigue cracks with radius below lk to the total number of cracks at
the point �x ,y ,z�. Obviously, p�N ,x ,y ,z� is a monotonically de-
creasing function of N because fatigue crack radii l tend to grow

with N.
To calculate p�N ,x ,y ,z� from Eqs. �18�, one can use the func-

tion f determined by Eq. �17�. However, it is more convenient to
modify Eqs. �18� by using Eq. �14� and changing in Eqs. �18� the
integration variable from l to l0

p�N,x,y,z� =
1

�
�

0

l0k

f�0,x,y,z,l0�dl0 if f�0,x,y,z,l0� � 0;

p�N,x,y,z� = 1 otherwise �19�

where l0k is determined by Eq. �12� and � is the initial volume
density of cracks. Thus, to every material point �x ,y ,z� is assigned
a certain local survival probability: 0� p�N ,x ,y ,z��1.

Equations �19� demonstrate that the material local survival
probability p�N ,x ,y ,z� is controlled mainly by the initial crack
distribution f�0,x ,y ,z , l0�, material fatigue resistance parameters
g0 and n, and applied stresses. Moreover, it easily follows from
Eqs. �19� that the material local survival probability p�N ,x ,y ,z� is
a decreasing function of N.

2.2 Survival Probability of Material as a Whole. To come
up with the survival probability P�N� of the material as a whole,
we will assume that the material fails as soon as it fails at least at
one point. Let pi�N�= p�N ,xi ,yi ,zi�, i=1,2 , . . . ,Nc �Nc=total
number of points in the material stressed volume V populated with
cracks�. Based on the above assumption the survival probability
P�N� is then equal to

P�N� = �
i=1

Nc

pi�N� �20�

while the probability of failure is 1− P�N�. Obviously, P�N� from
Eq. �20� satisfies inequalities

�pm�N��Nc � P�N� � pm�N� pm�N� = minV p�N,x,y,z� �21�

where the minimum is taken over the �stressed� volume of the
solid.

The right inequality in �21� shows that the survival probability
P�N� is never greater than pm�N�. Moreover, the material survival
probability P�N� is close to the local survival probability of the
“most dangerous” defect. The reason for that is the high value of
the power n in Paris’ Eq. �6� for fatigue crack growth. Usually, n
varies between 6.67 and 9. The first failure is created by the
cracks from a small volume element with the least favorable con-
ditions; i.e., with the smallest survival probability pm�N� �see Eq.
�21��. Therefore, in most cases, at relatively early stages of the
fatigue process

P�N� = pm�N� �22�

The detailed substantiation of the assumption that the first failure
is created by the cracks with the smallest survival probability
pm�N� is given by Kudish in �15�. This situation is also illustrated
by the example in Fig. 3, where cracks are randomly distributed
over an elastic material and are subjected to a uniform cycling
tensile stress field. In Fig. 3, the values of the normal stress inten-
sity factor are shown at different time moments �L0 and k0 are the
values of a crack characteristic size and normal stress intensity
factor k1, the maximum of k1 is taken with respect to the number
of cycles N�. These graphs clearly show that effectively, only the
cracks with initially the largest sizes, and, therefore, with the ini-
tially greater values of k1, propagate. Moreover, they propagate
much faster than all other cracks. As a result of that, the cracks
with the initially larger values of k1 reach their critical size way
ahead of all other cracks. This event determines the time and place
where fatigue initially starts. Therefore, for high values of n, the
survival probability P�N� of the material as a whole is a local
fatigue characteristic; i.e., it is determined not by the entire mate-
rial stressed volume but by the single �maybe several� material

Fig. 2 Schematic view of a crack distribution evolution with
number of loading cycles, N1<N2
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defect with the initially highest values of the stress intensity factor
k1. The higher the power n, the more accurate the above
assumption.

This simple analysis leads to the following conclusion. At the
relatively early stages of the fatigue process �which are of most
interest for practical applications�, the survival probability of any
volume of the material is equal to 1 except for the small vicinity
of the location of the most rapidly growing cracks. Thus, at the
early stages of the fatigue process, the survival probability P�N�
of the material as a whole is determined by the local survival
probability �see Eq. �20�� at the point with the maximum stress
intensity factor k1; i.e. P�N�= pm�N�. This coincides with the in-
tuitive understanding of the fatigue process and with typical ob-
servations that fatigue damage takes place first at the most
stressed points of the solid.

If the initial crack distribution is taken in the log-normal form
of Eq. �1�, then according to Eqs. �19�, the expression for pm�N� is
relatively simple and it is given by

pm�N� =
1

2
minV�1 + erf� ln l0k�N,x,y,z� − �ln

�2�ln
��

where erf�·� is the error integral. Monotonicity of the function erf
and the fact that �ln and �ln are constants lead to the expression
for pm�N�

pm�N� =
1

2�1 + erf� ln�minV l0k�N,x,y,z�� − �ln

�2�ln
�� �23�

According to Eq. �12�, for n�2, the value of minV l0k�N ,x ,y ,z� is
reached at the point�s� where maxVk10 is reached.

To determine the material fatigue life N* for the given survival
probability P*, it is necessary to solve the equation

pm�N*� = P* �24�

for N*. Finally, the fatigue model is reduced to Eqs. �4�, �12�, and
�22�–�24� for the fatigue life N* of material as a whole. A detailed

analysis of solutions of Eq. �24� is given in subsequent sections.

3 Model Analysis
First, let us consider the fatigue model behavior in some simple

cases. If f�0,x ,y ,z , l0� is a uniform crack distribution across the
material volume, then based on Eqs. �19� and inequality �13�, it
can be shown that p�N ,x ,y ,z� reaches its minimum at the points
where k10 and the principal tensile stress reach their maximum
values. This means that the material local failure probability �1
− p� reaches its maximum at the points with maximal tensile
stress. Therefore, for a uniform initial crack distribution
f�0,x ,y ,z , l0�= f�0,0 ,0 , l0�, the survival probability P�N� from
Eq. �22� is determined by the material local survival probability at
the points at which the maximal tensile stress is attained.

However, the latter conclusion is not necessarily correct if the
initial crack distribution f�0,x ,y ,z , l0� is not uniform across the
material. Suppose K=maxV k10�N ,x ,y ,z� is maximal at
�xm ,ym ,zm� and at the initial time moment N=0, at some point
�x* ,y* ,z*�, there exist cracks larger than the ones at the point
�xm ,ym ,zm�; i.e., 
�0

lkfdl0
�x*,y*,z*�� 
�0
lkfdl0
�xm,ym,zm�. After a certain

number of loading cycles �N�0� the material damage at the point
�x* ,y* ,z*� may advance to a greater extent than at the point
�xm ,ym ,zm� where l0k reaches its maximum value. Therefore, fa-
tigue failure may occur at the point �x* ,y* ,z*� instead of the point
�xm ,ym ,zm� and in a material with non-uniform initial defect dis-
tribution the material weakest point is not necessarily the material
most stressed point.

In �24�, it was shown that in models based on the stressed
volume considerations, �see, for example, the Lundberg-Palmgren
model for contact fatigue� the dependence of the survival prob-
ability on the stressed volume is exponential. That contradicts
experimental studies �see �25��, which show that there is a rela-
tively weak dependence of fatigue life on the material stressed
volume. In the model presented in this paper, the stressed volume

Fig. 3 Illustration of nonuniform over material volume growth of the stress inten-
sity factor k1 caused by crack growth under cycling loading for the number of
loading cycles N1=0, N2, N3; 0<N2<N3. The data are obtained for the power n=9.
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plays no explicit role. However, implicitly it does as the initial
crack distribution f�0,x ,y ,z , l0� depends on the material volume.
In a larger material volume, there is a greater chance to find initial
defects of greater size than in a smaller one. These larger defects
represent a potential source of fatigue damage and may cause a
decrease in fatigue life.

Now, let us establish the relationship between the mean �ln and
standard deviation �ln of the initial log-normal crack distribution
and the regular initial mean � and standard deviation �

� = exp��ln + 0.5�ln
2 �, � = ��exp��ln

2 � − 1,
�25�

�ln = ln
�2

��2 + �2
, �ln =�ln�1 + ��

�
�2�

Suppose the material failure occurs with the probability 1
− P�N� at a particular point �x ,y ,z�. By that we determine the
point �x ,y ,z� where in Eq. �23� the minimum over the material
volume V is attained. Therefore, at this point in Eq. �23� the op-
eration of minimum over the material volume V can be dropped.
Solving Eqs. �23� and �24�, one gets

N* = ��n

2
− 1�g0�maxT k10�n�−1

��exp��1 −
n

2
���ln + �2�ln erf−1�2P* − 1��� −

2 − n

lk2
�
�26�

where erf1�·� is the inverse function to the error integral erf�·�. Let
us simplify this equation for the case of a material initially free of
damage; i.e., P�0�=1. Discounting the very tail of the initial crack
distribution, one gets maxV�l0�� lk. Thus, for well developed
cracks �see Eq. �10�� and, in many cases, even for small cracks
�see Eq. �9��, the second term in Eq. �12� for l0k dominates the first
one. This means that the dependence of l0k on lk and kf can be
neglected and Eq. �26� can be approximated by

N* = ��n

2
− 1�g0�maxT k10�n�−1

�exp��1 −
n

2
���ln + �2�ln erf−1�2P* − 1��� �27�

It follows from Eqs. �3� that k10 is proportional to the maximum
tensile stress �1. Making use of Eqs. �25� and �27�, one arrives at
a simple analytical formula �see also �15��

N* =
C0

�n − 2�g0�1
ng��,�� �28�

g��,�� = ���2 + �2

�2 ��n/2�−1

�exp��1 −
n

2
��2 ln�1 + ��

�
�2�erf−1�2P* − 1��

�29�

where the constant C0 depends on the details of the solid geom-
etry and the stress state, i.e., on the ratios of �x /�z, �y /�z, and
�xz /�z, and the function g�� ,�� is completely determined by the
parameters of the initial defect distribution, fatigue resistance pa-
rameter n, and survival probability P*. Finally, assuming that �
�� Eqs. �28� and �29� lead to the formula

N* =
C0

�n − 2�g0�1
n��n/2�−1 exp��1 −

n

2
��2�

�
erf−1�2P* − 1��

�30�

Equation �30� demonstrates the intuitively obvious fact that the
fatigue life N is inversely proportional to the parameter g0; i.e., for
materials with lower crack propagation rate fatigue life is longer
and vice versa. Equation �30� exhibits a commonly accepted and
widely used behavior of the structural and contact fatigue �in the
latter case, �1 should be replaced by the maximum Hertzian pres-
sure pH� life N* versus stress �1. From the experimental data on
fatigue crack propagation in steels, it is well known that 20/3
�n�9. Keeping in mind that usually ���, for these values of n
the fatigue life N* is practically inversely proportional to a posi-
tive power of the mean crack size; i.e., ��n/2�−1. Therefore, the
fatigue life N* is a decreasing function of the initial mean crack
�defect� size �. This conclusion is valid for any material survival
probability P* and is supported by the experimental data discussed
in �1,2,24�. If P*�0.5 �see Eqs. �24� and �30�� then erf1�2P*
−1��0 and �keeping in mind that n�2� the fatigue life N* is a
decreasing function of the initial standard deviation � of crack
sizes. Similarly, if P*�0.5, then N* is an increasing function of
the initial standard deviation � of crack sizes. For P*=0.5, accord-
ing to Eq. �30� the fatigue life N* is independent from � while
according to Eqs. �28� and �29� it is a slowly increasing function
of �.

4 Application of the Model to Torsion and Bending
Fatigue

We will assume that in the beam material the defect distribution
is space-wise uniform and follows Eq. �1�. To use the available
formulas for torsion and bending loadings, we will also assume
that the residual stress is zero.

First, let us consider a beam made of an elastic material which
is directed along the y-axis and has elliptical cross section �a and
b are the ellipse semi-axes, b�a�. The beam is under action of a
torque My about the y-axis applied to its ends. The side surfaces
of the beam are free of stresses. It can then be shown �see �26�, p.
398� that


xy = −
2G�a2

a2 + b2z, 
zy =
2G�b2

a2 + b2x, �x = �y = �z = 
xz = 0

�31�

where G is the material shear elastic modulus, G=E / �2�1+���,
and � is a dimensionless constant. By introducing the principal
stresses �1, �2, and �3 that satisfy the equation �3− �
xy

2 +
zy
2 ��

=0, we obtain that

�1 = − �
xy
2 + 
zy

2 , �2 = 0, �3 = �
xy
2 + 
zy

2 �32�

For the case of a�b, the maximum principal tensile stress �1=
−2G�a2b / �a2+b2� is reached at the surface of the points
�0,y , ±b� and depending on the sign of My, it acts in one of the
directions described by the directional cosines

cos��,x� = �
�2

2
, cos��,y� = ±

�2

2
, cos��,z� = 0 �33�

where � is the direction along one of the principal stress axes. For
the considered case, the moments of inertia of the beam elliptic
cross section about the x- and y-axes, Ix and Iz, as well as the
moment of torsion My applied to the beam are as follows �see
�26�, pp. 395, 399� Ix=�ab3 /4, Iz=�a3b /4, C=4IxIz / �Ix+ Iz�, and
My =G�C. Keeping in mind that according to Hasebe and Inohara
�16� and Isida �17�, the stress intensity factor k1 for an edge crack
of radius l and inclined to the surface of a half-plane at the angle
of � /4 �see Eq. �33�� is k1=0.705
�1
��l, we obtain k10

= �1.41/���
My
 /ab2. By substituting the expression for k10 into
Eq. �27�, we obtain the fatigue life of a beam under torsion
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N* =
2

�n − 2�g0
�1.257ab2


My

�n

g��,�� �34�

where g�� ,�� is determined by Eq. �29�.
Now, let us consider bending fatigue of a beam/console made

of an elastic material with elliptic cross section �a and b are the
ellipse’s semi-axes� and length L. The beam is directed along the
y-axis and it is under the action of a bending force Px directed
along the x-axis and applied to its free end. The side surfaces of
the beam are free of stresses. The other end of the beam at y=0 is
fixed. It can then be shown �see �26�� that

�x = �z = 0, �y = −
Px

Iz
x�l − y�, 
xz = 0,


xy =
Px

2�1 + ��Iz

2�1 + ��a2 + b2

3a2 + b2 �a2 − x2 −
�1 − 2��a2z2

2�1 + ��a2 + b2� ,

�35�


zy = −
Px

�1 + ��Iz

�1 + ��a2 + �b2

3a2 + b2 xz

where Iz is the moment of inertia of the beam cross section about
the z-axis. Again, by introducing the principal stresses that satisfy
the equation �3−�z�

2− �
xy
2 +
zy

2 ��=0, we find that

�1 =
1

2
��y − ��y

2 + 4�
xy
2 + 
zy

2 �� , �2 = 0,

�36�

�3 =
1

3
��y + ��y

2 + 4�
xy
2 + 
zy

2 ��

The tensile principal stress �1 reaches its maximum
4
Px
L / ��a2b� at the surface of the beam at one of the points
�±a ,0 ,0� �depending on the sign of the load Px� and is acting
along the y-axis—the axis of the beam. Based on Eq. �36� and the
solution for the surface crack inclined to the surface of a half-
space at the angle of � /2 �see �16,17��, we obtain kl0

= �4.484/���
Px
L /a2b. By substituting the expression for k10 into
Eq. �27�, we obtain the bending fatigue life of a beam

N* =
2

�n − 2�g0
�0.395a2b


Px
L
�n

g��,�� �37�

where g�� ,�� is determined from Eq. �29�.
In cases of torsion and bending, fatigue life is independent of

the elastic characteristic of the beam material �see Eqs. �34� and
�37�� and it is dependent on fatigue parameters of the beam ma-
terial �n and g0�, the initial defect distribution �� and ��, the
geometry of the beam cross section �a and b� and its length L, and
the applied loading �Px or My�.

It is important to realize that in the presence of a subsurface
compressive residual stress, the actual mechanism of fatigue may
vary. Instead of fatigue cracks being nucleated at the beam sur-
face, the cracks leading to fatigue failure may be nucleated some-
where beneath the beam surface and then propagate at a rate
slower than the one for similar surface cracks until they reach the
surface. A similar scenario may be realized when the initial defect
distribution is not space-wise uniform, i.e., fast fatigue crack
growth may start at a different point at the surface or beneath the
surface of the beam.

5 Application of the Model to Contact Fatigue
Let us consider an infinite rigid cylinder of radius R parallel to

the y-axis that rolls and slides over an elastic half-space z�0
along the x-axis. The material of the half-space contains an initial
statistical space-wise uniform distribution of cracks that satisfies
Eq. �1�. The pressure applied to the surface of the half-space fol-
lows the Hertzian distribution q�x�= pH�1− �x /aH�2�1/2 for 
x


�aH, where pH and aH are the Hertzian maximum pressure and
contact half-width, respectively, pH= �PE� /�R�1/2 and aH

=2�PR /�E��1/2 �P is the normal load applied to a unit cylinder
length, E� is the effective elastic modulus: E�=E / �1−�2��. There
is also a frictional stress 
=−�q in the contact �� is the friction
coefficient� and a subsurface residual stress q0 that acts along the
x-axis. Kudish �15� showed that under normal lubrication condi-
tions and observed in practice near surface high compressive and
deeper beneath the surface small tensile residual stresses contact
fatigue �pitting� is initiated at some subsurface defect. Taking into
account that the problem is essentially two dimensional and using
the assumption that cracks are small in comparison with the dis-
tance to the half-space/plane surface and to other cracks, one ob-
tains asymptotic formulas for the normal k1 and shear k2 stress
intensity factors �see Kudish �19��

k1 = l1/2�Zr��Zr� + q0 sin2 �� , k2 = l1/2�Zi − 0.5q0 sin 2��

Z =
1

�
�

−aH

aH

�q�t�D0�t� + 
�t�G0�t��dt, 
 = − �q ,

Zr = Re�Z� , Zi = Im�Z� �38�

D0�t� =
i

2�−
1

t − X
+

1

t − X̄
−

e−2i��X̄ − X�

�t − X̄�2
� ,

G0�t� =
1

2� 1

t − X
+

1 − e−3i�

t − X̄
−

e−2i��t − X�

�t − X̄�2 � , X = x + iz

where i is the imaginary unit �i2=−1�, ��x� is a step function:
��x�=0, x�0, ��x�=1, x�0, and uppercase variables stand for
the operation of complex conjugation. It is important to mention
that according to Eqs. �38� the quantities of k10=k1l1/2 and k20
=k2l−1/2 are functions of x and z and are independent from crack
half-length l. Using Eqs. �38�, Kudish �19� �see also Figs. 7 and 8
in �27�� has shown that for relatively high compressive residual
stresses �q0=−0.01pH� there are surface and subsurface zones of
tensile resultant stress in material. In Tallian, et al. �20�, it is
shown that for contact interactions, the shear stress intensity factor
k2 is insensitive to variations of the friction coefficient �, while
the normal stress intensity factor k1 is strongly dependent on �.
Moreover, Mode II cracks are unstable and ultimately propagate
according to the Mode I mechanism. That substantiates the as-
sumption that both contact and structural fatigue mechanisms are
controlled by tensile stresses.

It is also important to mention that the residual stress q0 is as
essential as pressure q and frictional stress 
=−�q. Depending on
the residual stress behavior, the actual mechanism of contact fa-
tigue may vary. For example, in most practical cases, the residual
stress is highly compressive right near the contact surface; deeper
beneath the surface it changes to a low tensile one. In such cases,
for sufficiently smooth lubricated contacts fatigue is of a subsur-
face nature �see �28��. However, when the residual stress is tensile
right near the contact surface, fatigue may be caused by surface
�instead of subsurface� defects. In the latter case the lubricant
presence may play a detrimental role �see �28��.

For contact interactions, the principal stresses satisfy a full cu-
bic equation. They will be found numerically by determining the
direction and the location of the point at which the normal stress
intensity factor k1 reaches its maximum.

Let us analyze the model of contact fatigue in detail based on
Eq. �27�. It is important to notice that for contact fatigue the stress
intensity factors k1 and k2 as well as the fatigue life N depend not
only on the material fatigue parameters but also on its elastic
parameters E and � through the maximum Hertzian stress pH �see
above�.
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By the basic set of model parameters typical for bearing testing,
we denote the following: maximum Hertzian pressure pH
=2 GPa, contact region half-width in the direction of motion aH
=0.249 mm, friction coefficient �=0.002, residual stress varying
from high compressive value of q0=−237.9 MPa �q0=
−0.11695pH� on the surface to very low tensile value q0

=0.035 MPa �q0=0.175�10−4pH� at the depth of 400 �m below
it, fracture toughness kf varies between 15 MPa m1/2 and
95 MPa m1/2 for −400 �m�z�0 �m, g0=8.863 MPa−n m1−n/2

· cycle−1, n=6.67, mean of crack initial half-lengths �
=49.41 �m ��ln=3.888+ln��m��, and crack half-length initial
standard deviation �=7.61 �m ��ln=0.1531�. Numerical results
show that the fatigue life is practically independent from the ma-
terial fracture toughness kf, which supports the assumption used
for derivation of Eqs. �27�–�29�. To illustrate the dependence of
contact fatigue life N on some of the model parameters, just one
parameter from the basic set of parameters will be varied at a time
and graphs of the pitting probability 1− P�N� for the basic and
modified sets of parameters will be compared. Figure 4 shows that
as the crack mean � and standard deviation � increase the contact
fatigue life N decreases. Similarly, N decreases as the tensile re-
sidual stress occurring under the material surface and/or the fric-
tion coefficient � increase �see Figs. 5 and 6�. In addition, the
fatigue life N does not change when the magnitude of the com-
pressive residual stress is increased/decreased by 20% of its basic
value while the tensile portion of the residual stress distribution
remains the same. This is in agreement with the fact that tensile
stresses control fatigue. Contrary to that, when the compressive

residual stress becomes small enough, the frictional stress may
supersede it and create new/expanded zones with tensile stresses
that potentially may cause/accelerate fatigue failure.

The numerical results lead to the conclusion that ln�N� is prac-
tically a linear function of ln��� �see Eq. �30��. This behavior of N
versus � is similar to the fatigue life-defect size relationship ob-
tained experimentally for bearings by Stover and Kolarik II �29�.
This supports the validity of the approach used for the developing
of the new fatigue model.

Let us consider an example of the further validation of the new
fatigue model for tapered roller bearings based on a series of
approximate fatigue life calculations. We will assume that bearing
fatigue life can be closely approximated by taking into account
only the most loaded contact. The following parameters have been
used for calculations: pH=2.12 GPa, aH=0.265 mm, �=0.002,
g0=6.009 MPa−n m1−n/2 · cycle−1, n=6.67, the residual stress var-
ied from q0=−237.9 MPa on the surface to q0=0.035 MPa at the
depth of 400 �m below the surface, and the fracture toughness kf
varied between 15 MPa m1/2 and 95 MPa·m1/2. The crack �inclu-
sion� initial mean half-length � varied between �=49.41 �m and
244.25 �m, and the crack length initial standard deviation varied
between �=7.61 �m and 37.61 �m. The results for the fatigue
life N15.9 �for P�N15.9�= P*=0.159� calculations are given in the
Table 1 and they practically coincide with the experimental data
obtained by The Timken Co. �see Fig. 19 in �30��. In the present
paper this graph is given as Fig. 7. In Fig. 7, the fatigue life N is
given as a function of the cumulative inclusion length �sum of all
inclusion lengths over a cubic inch of steel� and in the present
paper the fatigue life is calculated as a function of the mean in-
clusion half-length �. However, the numerical data for the fatigue
life can be brought in perfect compliance with the experimental
data by choosing the right measure of steel cleanliness and the
proper values for g0 and n.

Based on the results from the new model, bearing fatigue life
can be significantly improved for steels with the same cumulative
defect size but smaller mean half-length � �see Fig. 4�. For bear-
ing steels with small percentage of failures �survival probability

Fig. 4 Graphs of pitting probability 1−P„N… calculated for the
basic set of parameters with �=49.41 �m, �=7.61 �m „�ln
=3.888+ln„�m…, �ln=0.1531…, for the same set of parameters
with changed initial value of crack mean half lengths �
=74.12 �m „�ln=4.300+ln„�m…, �ln=0.1024…, and for the same
set of parameters with changed initial value of crack standard
deviation �=11.423 �m „�ln=3.874+ln„�m…, �ln=0.2282…

Fig. 5 Graphs of pitting probability 1−P„N… calculated for the
basic set of parameters with �=0.002 and for the same set of
parameters with changed friction coefficient �=0.004

Fig. 6 Graphs of pitting probability 1−P„N… calculated for the
basic set of parameters and for the same set of parameters
with changed profile of residual stress q0 in such a way that at
points where q0 is compressive, its magnitude is unchanged
and at points where q0 is tensile, its magnitude is doubled

Table 1 Tapered bearing fatigue life N15.9 versus the initial ma-
terial inclusion size mean � and standard deviation �

�, �m �, �m N15.9, cycles

49.41 7.61 2.5�108

73.13 11.26 1.0�108

98.42 15.16 5.0�107

147.11 22.66 2.0�107

244.25 37.62 6.0�106
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P�0.5� with the same cumulative defect size, fatigue life can be
improved significantly if the width of the initial defect distribution
is reduced; i.e., when the standard deviation � is made smaller
�see Fig. 4�. Figures 5 and 6 show that elevated tensile residual
stress is more detrimental to fatigue life then higher friction.

6 Conclusions
A new statistical fatigue model that takes into account the most

important parameters of the fatigue phenomenon �such as acting
stresses, initial statistical defect distribution, orientation of fatigue
crack propagation, and material fatigue resistance� is derived and
analyzed. The model allows studying the effects of material clean-
liness, applied stresses, and material fatigue resistance on fatigue
life as single or composite entities. Some analytical results for
torsion and bending fatigue of beams and its validation by the
experimentally obtained fatigue life data for tapered bearings are
presented.
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Size Effect of Cohesive
Delamination Fracture Triggered
by Sandwich Skin Wrinkling
Because the observed size effect follows neither the strength theory nor the linear elastic
fracture mechanics, the delamination fracture of laminate-foam sandwiches under uni-
form bending moment is treated by the cohesive crack model. Both two-dimensional
geometrically nonlinear finite element analysis and one-dimensional representation of
skin (or facesheet) as a beam on elastic-softening foundation are used. The use of the
latter is made possible by realizing that the effective elastic foundation stiffness depends
on the ratio of the critical wavelength of periodic skin wrinkles to the foam core thick-
ness, and a simple description of the transition from shortwave to longwave wrinkling is
obtained by asymptotic matching. Good agreement between both approaches is achieved.
Skin imperfections (considered proportional to the the first eigenmode of wrinkling), are
shown to lead to strong size dependence of the nominal strength. For large imperfections,
the strength reduction due to size effect can reach 50%. Dents from impact, though not
the same as imperfections, might be expected to cause as a similar size effect. Using
proper dimensionless variables, numerical simulations of cohesive delamination fracture
covering the entire practical range are performed. Their fitting, heeding the shortwave
and longwave asymptotics, leads to an approximate imperfection-dependent size effect
law of asymptotic matching type. Strong size effect on postpeak energy absorption, im-
portant for impact analysis, is also demonstrated. Finally, discrepancies among various
existing formulas for critical stress at periodic elastic wrinkling are explained by their
applicability to different special cases in the shortwave-longwave transition.
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1 Introduction
A major question in extrapolating small-scale laboratory tests to

full-scale sandwich structures is the size effect. Delamination of
the skin �or facesheet� is often triggered by wrinkling instability,
which has generally been considered to be free of size effect
�1–5�. The absence of size effect has been inferred from the fact
that the critical stress for buckling generally exhibits no size ef-
fect. However, this inference is valid only for the symmetry-
breaking bifurcation of equilibrium path in perfect structures �6�.
In actual sandwich structures, the geometrical shape of the skin is
always geometrically imperfect, at least to some degree, due to
imprecise manufacturing. Dents from impacts represent severe
imperfections, usually accompanied by preexisting delaminations.

Buckling of imperfect quasibrittle structures generally leads to
snapthrough instability which typically exhibits size effect on the
nominal strength �e.g., �7� Chap. 13�. The size effect is understood
as the dependence of the dimensionless nominal strength of struc-
ture on its characteristic dimension �considered here as the skin
thickness� when geometrically similar structures are compared
�i.e., when all the structural dimensions are varied in proportion to
the chosen characteristic dimension� �6,7�. The objective of this
paper is to verify that this indeed happens for buckling driven
delamination, to quantify the size effect, and to determine its in-
tensity. A secondary objective is to assess the size effect on the
postpeak energy absorption, important for judging survival under
blast or dynamic impact.

Delamination in sandwiches and laminate composites has tradi-
tionally been analyzed by strength theory �either elastoplasticity
or elasticity with strength limit� �8–14�. In this classical theory,
there is no size effect.

Linear elastic fracture mechanics �LEFM� was applied to the
analogous problem of delamination of micrometer-range metallic
films from their substrate �15,16� and was also used in ��7�, p.
770�. For sandwich structures, however, LEFM now appears as
unrealistic because, according to recent experiments �17,18�, the
size effect in typical laboratory tests is about half as strong as
expected for LEFM. Therefore, the structure is quasibrittle �19�,
which means that the size of the fracture process zone �FPZ�
cannot be considered to be negligible compared to the cross-
sectional dimension of normal-size sandwich structures. Thus,
delamination fracture should be simulated by the cohesive crack
model rather than LEFM. This model has already been used in
some recent numerical simulations �20,21� and will be adopted
here.

Since buckling driven delamination is difficult to control in
experiments, it is not surprising that only few experimental studies
have been reported �e.g., �22,23��, and that none provides compre-
hensive insight. Thus, the present study will rely on numerical
simulations using geometrically nonlinear finite element analysis
as well as the softening foundation model, which is an adaptation
of Winkler elastic foundation. Dimensionless variables will be
used to cover the entire practical range. This goal will also neces-
sitate clarifying confusion that still exists even for elastic skin
wrinkling. It will be seen that different existing wrinkling formu-
las apply to different special cases, such a shortwave and long-
wave wrinkling.

This study deals exclusively with the deterministic size effect
�6,7,24�. The Weibull-type statistical size effect on the mean struc-
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tural strength may, of course, also occur but must, in principle, be
negligible when the location of failure initiation is fixed, either by
mechanics or by defects, such as notches or dents. The present
study is also limited to two-dimensional analysis of sandwich
beams subjected to pure bending. Sandwich structures subjected
to compression with or without bending are expected to lead to
interaction of overall buckling and wrinkling �see Appendix�,
which is beyond the scope of this paper. So is the three-
dimensional wrinkling, leading to two-dimensional delamination
blisters, for which a similar, but probably weaker, size effects may
be expected.

2 Softening Foundation Model
The analysis of delamination in sandwich structures subjected

to pure bending, as shown in Fig. 1�a�, can be simplified by mod-
eling the skin as an axially compressed beam supported by a soft-
ening foundation consisting of independent continuously distrib-
uted nonlinear springs �Fig. 1�b��. For the mathematically
analogous problem of a foundation with bilinear elastic-plastic
hardening response, the solution is available �25�. Here, the prob-
lem is solved for bilinear elastic-softening response, in which the
softening represents gradual decohesion due to a cohesive crack
under the beam. The differential equation of the problem reads

EsIs
d4W

dX4 + P
d2W

dX2 + F = − P
d2W°

dX2 �1�

where Es=Young’s modulus of the skin, Is= t3 /12=moment of
inertia �per unit width� of the cross section of the skin of thickness
t, P=axial force in the beam �per unit width�, X=coordinate in the
axial direction, and W�X�=deflection �lateral displacement� of the
skin, additional to the initial deflection W°. Furthermore, F is the
distributed lateral force �traction�, defined as

F = �KW if W � W0

KW0e−�W−W0�/�Wf−W0� if W � W0
� �2�

where K is the foundation modulus �i.e., the spring stiffness of the
foundation per unit length�, W0 is the displacement at which the
tensile strength f t is reached �Fig. 2� and Wf controls the fracture
energy GF of the cohesive crack, which lies in the core very near
the skin,

GF = f t�Wf −
W0

2
� �3�

GF represents the total area under the stress-displacement curve in
Fig. 2 �and not the area under the postpeak part of that curve, for
unloading follows the elastic stiffness�. The distributed spring
stiffness K �per unit length of beam� may be interpreted as

K =
Ec

heq
�4�

where Ec is Young’s modulus of the sandwich core and heq repre-
sents the equivalent �or effective� depth of the foundation.

First, we consider the case of shortwave wrinkling of com-
pressed skin, which is not affected by the opposite skin, and leave
the case of interacting skins for later consideration. In this case,
by contrast to many previous studies, heq cannot be considered as
constant. Rather, it depends on the stress field in the core below
the skin �Fig. 3� and represents the thickness of a uniformly
stressed strip of core material that gives the same foundation stiff-
ness as the actual, nonuniformly stressed, core �and has a negli-
gible shear modulus�.

3 Elastic Shortwave Wrinkling and Equivalent Foun-
dation Depth

Consider that the wavelength Lcr�h �h=core thickness�. In that
case, and approximately if Lcr�h, the core may be regarded as an
infinite half-space. The reason is that the alternating tractions ap-
plied on the core by the periodically wrinkled skin �Fig. 3�b�� are
self-equilibrated over a segment of length 2Lcr where Lcr is the
half wavelength of skin buckling �Fig. 3�c��. Therefore, according
to the St. Venant principle, the stresses caused by periodic wrin-
kling must exponentially decay to nearly zero over a distance
from the skin roughly equal to 2Lcr. Therefore, it must be possible
to write

Fig. 1 „a… The geometry of a typical sandwich beam subjected
to pure bending and „b… the beam subjected to an axial com-
pression force P supported by a softening foundation

Fig. 2 Force-displacement relation of the softening foundation

Fig. 3 „a… The deflection of the top skin, „b… equilibriated
stress acting on the foam, „c… equivalent height for shortwave,
and „d… longwave wrinkling
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heq0
= �Lcr �5�

where � is some constant and subscript 0 refers to the limit case
Lcr /h→0. For periodic skin buckling, the solution of the homo-
geneous differential equation for a beam on elastic foundation
��7�, p. 316� yields

Lcr = ��EsIs

K
�1/4

= ���LcrEsIs

Ec�
�1/4

, Is =
t3

12
�6�

where Is= t3 /12=central moment of inertia of the skin cross sec-
tion �per unit width b�. Solving �6� for Lcr provides

Lcr = t��4�Es

12Ec�
�1/3

�7�

where Ec�=effective Young’s �elastic� modulus of the core; for
plane stress, Ec�=Ec, and for plane strain, Ec�=Ec / �1−�c

2� where
�c=Poisson ratio of the core. In this expression, �c accounts for
the out-of-plane effect of Poisson ratio. Note that the in-plane
effect of Poisson ratio, manifested in the effect of shear modulus
Gc=Ec� /2�1+�c� of the core on its resistance to skin wrinkling, is
known to be negligible in beam bending.

Thus, the critical axial compressive force in the skin at bifur-
cation is �per unit width b�

Pcr0
= 2	KEsIs = k1�Ec�

2Es�1/3t where k1 = � 2

3�2�2�1/3

�8�

Note that this expression for Pcr has the same form as that derived
in �3� by solving the elastic boundary value problem problem
under certain simplifications. The present derivation is far shorter,
but it does not yield the value of �. Comparison of the two ex-
pressions indicates dependence on �c

� = �	1 + �c �9�

The solution in �3� is matched if �=0.43. Here, however, �
=0.53 is used, as determined from a single finite element analysis
of Pcr.

A similar expression, namely, Pcr=0.85t�Eskt
2�1/3 �where kt is a

function of Ec�, was proposed in �26� with kt taking into account
the influence of orthotropic core.

4 Elastic Moment-Induced Longwave Wrinkling
Consider now that the critical wavelength Lcr	h �Fig. 3�d��

and that the sandwich beam is subjected to bending moment only
�i.e., with no axial force�. Then the opposite skin is under tension
and may be approximated as a rigid base, with no deflection. The
transverse compressive stress in the core is now almost uniform,
and

heq

= h �10�

i.e., the foundation stiffness K=Ec� /heq is constant �independent of
the critical wavelength�. The critical axial compressive force in
the skin at bifurcation for periodic skin buckling �with no delami-
nation� is ��7�, p. 316�

Pcr

= 2	KEsIs =	Ec�Est

3

3h
�11�

which is the same as reported in �4�; subscript 
 refers to the limit
case Lcr /h→
, for which the solution is exact.

The hypothesis of the opposite skin being rigid is justified if the
skin is sufficiently thick or subjected to sufficient tension, or both.
Similar to shortwave wrinkling, the longwave wrinkling is re-
sisted primarily by transverse normal stresses in the core, while
the shear stresses in the core �which dominate global buckling�
play a minor role.

5 Asymptotic Matching of Elastic Shortwave-to-
Longwave Transition

In general, the equivalent height heq for both shortwave wrin-
kling in �5� and longwave wrinkling in �10� is subjected to the
upper bound

heq = min�heq0
,heq


� �12�

In reality, the transition between shortwave wrinkling and long-
wave wrinkling will not be abrupt but smoothly distributed over a
certain range of the dimensionless variable

� =
heq0

h
�13�

The shortwave bound heq=heq0
must be tangentially approached

for �→0, and the longwave bound heq=heq

must be an asymp-

tote for �→
. A smooth transition meeting these asymptotic con-
ditions may simply be described by the function heq0

/heq=�+e−�,
which, however, has no free parameters to adjust according to
finite element results. A more general expression that has such
parameters, a1 and a2, and meets all the asymptotic conditions is

heq0

heq
= � + e−��+a1�2+a2�3� �14�

where a1=0.24 and a2=0.36, as obtained by fitting numerical re-
sults with the Marquardt-Levenberg algorithm for nonlinear least-
squares optimization. The exponential decay in the expression for
heq0

/heq is favored by the fact that, according to St. Venant prin-
ciple, the self-equilibrated tractions applied in a localized distur-
bance �such the wavelength of the skin� are known to decay with
the distance from the disturbance exponentially. Comparisons of
Eq. �14� to the results of finite element simulations are shown in
Fig. 4.

Usually the end of a sandwich beam has either a laterally sup-
ported compressed skin or a zero bending moment �and thus no
compression in the skin�. In the rare case of an end with laterally
sliding compressed skin ��7�, p. 318� a semi-infinite skin wrinkles
nonperiodically, as an exponentially decaying modulated sinusoid,
and then both �8� and �11� must be divided by 2, with no change
to the rest of analysis.

6 Formulation in Dimensionless Variables
The solution may generally be expressed as a relation among

seven dimensional variables: EsIs ,K , P ,W0 ,W° ,Wf ,x which in-
volve two independent dimensions, force and length. According to
the Vashy-Buckingham theorem of dimensional analysis, the num-
ber of dimensionless variables governing the problem is 7−2=5.
They may be chosen the same as in a previous study of plastic
bilinearly hardening foundation �25�

Fig. 4 Evolution of the equivalent height heq for the transition
from shortwave to longwave wrinkling

1136 / Vol. 74, NOVEMBER 2007 Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.42. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



x = X�EsIs

K
�−1/4

, � =
1

2
P�KEsIs�−1/2 �15�

w =
W

W0
, w° =

W°

W0
, wf =

Wf

W0
�16�

Substituting Eqs. �15�, �16�, and �2� into �1�, yields the dimension-
less differential equation

d4w

dx4 + 2�
d2w

dx2 + w = − 2�
d2w°

dx2 if w � 1 �17a�

d4w

dx4 + 2�
d2w

dx2 + e�w−1�/�wf−1� = − 2�
d2w°

dx2 if w � 1 �17b�

where w=dimensionless deflection. For a perfect beam �w°=0�,
the first eigenmode of buckling at bifurcation is determined from
�17a� as w=sin x, and the corresponding load at bifurcation results
in �=1.

A generic imperfection of skin may be expressed as a linear
combination �or infinite series� of all the eigenmodes of elastic
skin wrinkling. Similar to other buckling problems, the first eigen-
mode may be expected to have the dominant influence for loads
near the first critical load �7�. Therefore, the imperfection  of the
skin is chosen to be proportional to the aforementioned displace-
ment profile w=sin x of perfect skin at first bifurcation, i.e., w°

= sin x. The solution of �17� for the elastic case �wmax�1�, with
the aforementioned imperfection, is

w�x� =
�

1 − �
sin x �18�

This solution will be used in Sec. 9 for deriving the size effect
law. The size effect is understood as the dependence of dimen-
sionless nominal strength � on skin thin thickness t when all the
structural dimensions vary in proportion to t, i.e., h / t=const. For
buckling failures with material failure criteria expressed solely in
terms of stresses and strains, the size effect is nil �6�, i.e., � is
independent of t.

The dimensionless variables x, w, w°, and � are size indepen-
dent. However, ensuring constant fracture energy requires that the
dimensionless parameter wf be considered size dependent, as ob-
tained by inserting �3� into �16�,

wf =
GFEc

ft
2heq

+
1

2
�19�

�note that this size dependence is analogous to the dependence of
fracture energy on the mesh size in the crack band model �7,27��.
Parameters GF, Ec, and f t are material properties independent of
the structure size, whereas heq is proportional to the structure size.
Thus, the size dependence of wf can be characterized as

wf =
1

�
+

1

2
�20�

where

� =
heq

l0
, l0 =

EcGF

ft
2 �21�

� is dimensionless and l0 is known as Irwin’s characteristic mate-
rial length. For cracks in bulk, l0 characterizes the fracture process
zone length but not for delamination cracks �see �28,29� for open-
ing and �30� for shear mode�. What matters here is that l0 repre-
sents a length parameter formed solely from basic material
constants.

The initial boundary value problem solver of the commercial
package MATLAB is used for numerical solution of the ordinary
nonlinear differential equation �17�. The amplitude of the initial
displacement field is slightly increased in the middle of the beam,
in order to control the location of the delamination growth. This

increase is chosen to be so small that its effect on the magnitude
of the load carried by the skin be imperceptible. The results are
later compared to those of the finite element simulations in Sec. 8.

To simplify analysis, only one half of the beam is modeled and
symmetric deformation is assumed. Even though the actual
growth of delamination blister must be expected to be non-
symmetric �one-sided� ��7�, Chap. 12� the assumption of symme-
try should be satisfactory because asymmetric growth of delami-
nation fracture should produce a deflection curve symmetric with
respect to a moving center of the blister.

When the delamination blister grows, the equivalent core depth
below the blister �though not elsewhere� increases, which de-
creases the core stiffness. However, in view of satisfactory agree-
ment with the finite element results, this effect appears to be mi-
nor and is not considered here.

7 Geometrically Nonlinear Finite Element Analysis
To determine parameter � in �17� and to validate the simplified

modeling of delamination by the softening foundation model, a
geometrically nonlinear finite element program �FEAP, procured
from R. Taylor, Berkeley, CA� is used. A sandwich beam, depicted
in Fig. 1�a�, is considered and is modeled using the finite element
mesh in Fig. 5. The skins are represented by beam elements taking
into account large displacements and large rotations. For the core,
plane stress finite elements based on a linearized small displace-
ment formulation are used. The core is treated as isotropic, and for
the skin, only the longitudinal elastic modulus Es needs to be
considered since the transverse and shear moduli of laminate skin
are immaterial for bending and axial deformation.

The beam is considered to be subjected to a uniform bending
moment M. However, as long as the core thickness h is large
enough for the stresses from wrinkling to decay to nearly zero
over the core thickness, the only loading that matters is the axial
force in the skin, which is P=M / �h+ t�. Whether this force is
produced by moment alone, or a combination of bending moment
and axial force, is immaterial.

An elastic stress-strain relation is used for all the elements of
the core except a narrow band of elements under the skin �marked
gray in Fig. 5�. It is known that the delamination fracture occurs
within the core very near the interface with the skin, but not
within the interface. Therefore, perfect bond between the skins
and the core is enforced. Transverse softening of the aforemen-
tioned band, which can be regarded as distributed microcracking,
simulates delamination. In the softening band, the stress-strain law
is elastic in the prepeak, and the postpeak response follows the
isotropic damage model proposed in �27�, which is defined as

� = �1 − ��Dc:� = �1 − ���̄ �22�

Here, � and � are the stress and strain tensors in the core, �̄ is the
effective stress tensor, � is the damage variable, and Dc is the
isotropic elastic stiffness tensor of the core, which is based on the
Young’s modulus Ec and the Poisson’s ratio �c. The damage vari-
able � is a function of history variable �, which is defined as the
maximum equivalent strain �̃ reached in the history of the mate-
rial: ��t�=max �̃��� for �� t. The equivalent strain is defined as

Fig. 5 Finite element mesh
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�̃ =
	
�̄c�:
�̄c�

Ec
�23�

where 
x�=max�x ,0�. This definition corresponds to a Rankine-
type strength envelope with a smooth round-off in the sectors of
two positive principal stresses, as shown in Fig. 6�a�.

The damage variable � is related to the history variable � as

� = g��� = �0 if � � �0

1 −
�0

�
exp�−

� − �0

� f − �0
� if � � �0  �24�

where �0= f t /Ec, f t is the tensile strength of the core. The param-
eter � f is related to the fracture energy GF as

� f =
GF

Ec�0he
+

1

2
�0 �25�

where he is the depth of the element row �softening band� adjacent
to the skin �Fig. 5�. This damage law results in an exponential
stress-strain curve in uniaxial tension, as presented in Fig. 6�b�.
The inelastic strains determined by the isotropic damage model
are fully reversible, i.e., the secant stiffness points toward the
origin �this reversibility would, of course, be unrealistic if crack
unloading were not absent from the present simulations�.

As before, only one-half of the beam is modeled �Fig. 5�. The
loading moment M is applied at point D and assumed to be trans-
ferred by a rigid loading platen into the upper and lower skins.
The structure is restrained in longitudinal direction at point A. The
loading is controlled by prescribing the displacement of point B.
The same initial displacement, i.e., w°= sin x, is prescribed for
the upper skin. The imperfection amplitude  at the middle of the
beam at point A is slightly increased in the same way as for the
softening foundation model, to control the place where the
delamination begins.

8 Results and Comparison of Softening Foundation to
Finite Elements

The effect of the structure size on the relation between the load
parameter � and the mid-point displacement wa=w�l /2� is shown,

for three imperfection amplitudes =0.1,1 ,2, in Fig. 7 �in which,
l=L�EsIs /K�−1/4, where the beam length L is chosen to be 17Lcr.�
As one can see, the results of the softening foundation model are
in reasonable approximate agreement with the more accurate finite
element results. The comparison shows that the size has a strong
effect on the postpeak part of the load-displacement relation. The
larger the size, the less energy is dissipated in relation to the
energy dissipated by delaminating the entire skin. The deflection
curves of the upper skins obtained from the softening foundation
model for a constant imperfection =0.1, and for the sizes �=1
and �=0.05, are shown in Fig. 8, respectively. In accordance with
the load-displacement curves in Fig. 7, the lateral displacement wa
for the small structure size is greater than for the large structure
size. The overall deflection pattern is similar. However, a closer
examination of the size effect on the evolution of the diagram of
load versus blister length b �which is the normalized length in the
middle portion of the beam in which w�1� reveals a size effect
on the nominal strength; see Fig. 9. The larger the size, the smaller
is �max �i.e., it varies in proportion to the nominal strength, for the

Fig. 6 Initial stress envelope represented in the principal
stress space obtained with the damage loading function

Fig. 7 Load � versus the midpoint displacement wa obtained
with the softening foundation model and the finite element
model for the imperfections: „a… �=0.1, „b… �=0.5, and „c… �=1
for two sizes „�=1 and �=0.05…
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loading case presented in Fig. 1�a��. Furthermore, note that the
size effect intensity depends strongly on the imperfection ampli-
tude. A law for this size effect is proposed next.

9 Size Effect Law for Imperfection Sensitive Wrin-
kling

The size effect on the dimensionless nominal strength, �N
=�max, shown in Fig. 10, has a form similar to the size effect law
for crack initiation in quasibrittle structures, which reads
�6,19,24,31,32� �N=�
�1+1/ �k+���, where �
 has the meaning
of nominal strength of infinitely large structure. This law, how-
ever, is not directly applicable since imperfections are seen in Fig.
10 to influence the size effect. Therefore, a generalized law of the
form

�N�,�� = �
���1 +
1

k�� + a�b�, k�� = c−d �26�

is proposed here, with constants a ,b ,c ,d and parameters �
 and
k, depending on the imperfection amplitude . For large sizes ��
→
�, the nominal strength is decided by initiation of cohesive
crack �w=1�, and in that case �18� leads to

�N�,
� = �
 = 1/�1 + � �27�
Note that here the large-size limit does not correspond to LEFM,
which is the case for type 2 size effect �24�, seen in specimens
with notches or large stress-free cracks. Rather, in the absence of
preexisting delamination crack, we see a particular case of type 1
size effect �24� because the geometry is positive �6,19�, causing
failure to occur at crack initiation.

For small sizes ��→0�, the nominal strength in �26� turns into

�N�,0� = �
���1 +
1

k��� �28�

Parameters a ,b ,c ,d in �26� are determined as optimal fits of
numerical results using the Marquardt-Levenberg algorithm for
nonlinear least-squares optimization. First, the parameters c and d
are determined from the fit of the results for the smallest size ��
=0.001� in Fig. 10, for varying imperfections. Then the param-
eters a and b in �26� are fitted for the largest imperfection �
=6� and varying size. The optimum values are a=9.94, b=1.2,
c=6.82, and d=1.21. The size effect law in �26� using these pa-
rameters is compared to the results of the softening foundation
model in Fig. 10. The approximation is seen to be satisfactory.

To elucidate the typical values of � and  for small laboratory
specimens, consider the material properties Ec=200 MPa, �c
=0.25, Es=150 GPa, f t=1 MPa, GF=750 N/m. Furthermore, let
the skin thickness be t=0.001 m and let the beam height be so
great that the assumption of shortwave wrinkling �Sec. 3� is valid.
Equations �9�, �7�, and �5� give the equivalent height as heq
=0.0091 m. According to �21�, the dimensionless size of the
beam, is �=0.061. Furthermore, according to �16�, the dimension-
less amplitude =6 corresponds to an imperfection amplitude of
27% of the skin thickness t. The nominal strength of this beam

Fig. 8 Deflection of the upper skin for the postpeak regime for
imperfection �=0.1 and for the sizes: „a… �=0.05 and „b… �=1
obtained from the softening foundation model

Fig. 9 Load � versus the blister length „mid beam region in
which w>1… of the upper skin for the imperfections: „a… �=0.1,
„b… �=1, and „c… �=4 and for the sizes �=1, �=0.5, and �=0.1
obtained from the softening foundation model
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falls into the transitional range of the size effect law in Fig. 10.
Therefore, up-scaling leads to a considerable reduction of the
nominal strength.

10 Conclusions

1. In view of recent experiments revealing a size effect deviat-
ing from both LEFM and strength theory, the delamination
fracture of laminate-foam sandwich structures must be
treated as a cohesive crack with a softening stress-separation
relation characterized by both fracture energy and tensile
strength. In contrast to LEFM, no preexisting interface flaw
needs to be considered.

2. The skin �or facesheet� can be treated as a beam on elastic-
softening foundation, provided that the equivalent �or effec-
tive� core depth heq for which the hypothesis of uniform
transverse stress gives the correct foundation stiffness is
considered to depend on the critical wavelength Lcr of skin
wrinkles; heq=core thickness h for the asymptotic case of
longwave wrinkling �Lcr /h→
�, while �because of St. Ve-
nant principle� heq�Lcr for the asymptotic case of shortwave
wrinkling �Lcr /h→0�.

3. A properly formulated softening foundation model for the
skin in sandwich beams subjected to bending moment can
give good agreement with geometrically nonlinear finite
element analysis of delamination fracture triggered by
wrinkling.

4. Although the nominal strength of sandwich structures failing
by wrinkling-induced delamination fracture is size indepen-
dent when there is no imperfection, it becomes strongly size
dependent with increasing imperfection. A size effect caus-
ing strength reduction by 50% is possible for larger imper-
fections. Dents from impact may be expected to have a simi-
lar effect, even though they are not merely geometrical
imperfections �because of being usually accompanied by ini-
tial delamination�.

5. Introduction of proper dimensionless variables makes it pos-
sible to cover with numerical simulations the entire practical
range, and fitting the dimensionless numerical results for
cohesive delamination fracture with a formula of correct
shortwave and longwave asymptotics allows constructing an
approximate size effect law for nominal strength of imper-
fect sandwich beams subjected to uniform bending moment.

6. There is also a strong size effect on postpeak energy absorp-
tion by a sandwich structure, both in the presence and ab-
sence of imperfections. This is important for impact and
blast resistance.

7. The distinction between shortwave and longwave periodic
wrinkling permits clarifying discrepancies among various
existing formulas for elastic wrinkling, e.g., Hoff and Maut-
ner’s formula �3� applies to the limit of shortwave wrinkling,
Heath’s formula �4� to the limit of longwave wrinkling.

Appendix: Comments on Transition to Global Buckling
and “Naive” Optimization

The case where the opposite skins carry equal �or almost equal�
axial force tends to produce skin wrinkling in which both skins
deflect in the same direction. This is a different buckling mode—
the global buckling of a sandwich beam in which the transverse
normal stresses are negligible and the shear resistance of the core
is paramount. The critical axial stress in the skins at bifurcation is
given by Engesser’s formula ��7�, p. 32, 736�

�crg
= � 1

2bt
��Fcr0

−1 + �Gbh�−1�−1 �A1�

Here, G=elastic shear modulus of the core, Fcr0= ��2 /Lef
2 �R

=Euler critical axial load corresponding to negligible shear defor-
mation of the core, Lef =effective buckling length of sandwich
column, and R=bending stiffness�b�t3+3t�h+ t�2�Es /6 �note that
Haringx’s formula does not apply to sandwich buckling �33,34��.

A unified condition for bifurcation stress � in the skin, appli-
cable to both skin wrinkling and global buckling �distinguished
now by subscripts w and g� may be written as ��−�w���−�g�
=0, where �w, �g=maximum stresses for wrinkling of imperfect
skin or buckling of imperfect column, each considered alone.
However, according to Koiter ��7�, Sec. 4.6� proximity of two
critical loads generally enhances imperfection sensitivity. Thus,
when �w and �g are nearly equal, the maximum stress � for com-
bined wrinkling and buckling gets reduced. This could be approxi-
mately captured by the following relation:

�� − �w
p��� − �g

r� = rp+q �A2�

where p ,q are positive empirical constants �probably of the order
of 1� and r is a measure of failure stress reduction due to mode
interaction. If one term of the product in this equation tends to 
,
the other must tend to 0, i.e., the equation implies the individual
critical stresses �w and �g. Equation �A2� also has the necessary
property that the reduction of failure stress � is maximum when
the two critical stresses coincide. These features agree with the
well-known fact that the so-called naive optimum designs, in
which one or more critical stresses coincide, ought to be avoided.
However, verification, calibration or possible modification of Eq.
�A2� is beyond the scope of this study.
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Reynolds-Stress Modeling of
Three-Dimensional Secondary
Flows With Emphasis on
Turbulent Diffusion Closure
The purpose of this paper is to assess the importance of the explicit dependence of
turbulent diffusion on the gradients of mean-velocity modeling in second moment clo-
sures on three-dimensional (3D) detached and secondary flows prediction. Following
recent theoretical work of Younis, Gatski, and Speziale, 2000, [Proc. Royal Society Lon.
A, 456, pp. 909–920], we propose a triple-velocity correlation model, including the
effects of the spatial gradients of mean velocity. A model for both the slow and rapid
parts of the pressure-diffusion term was also developed and added to a wall-normal-free
Reynolds-stress model. The present model is validated against 3D detached and second-
ary flows. Further developments, especially on the echo terms (which should appear in
the formulation of pressure-velocity correlation), are discussed.
�DOI: 10.1115/1.2722780�

1 Introduction

In second-moment closures, the turbulent diffusion dij
T appear-

ing in the transport equation of the Reynolds-stresses due to ve-
locity fluctuations dij

u is generally modeled with the Daly and Har-
low �1� proposal �DH� or the Hanjalić and Launder �2� model
�HL�, whereas the turbulent diffusion due to pressure fluctuations
dij

p is neglected. The model proposed by Lumley �3� was obtained
by considering weakly anisotropic and inhomogeneous flow and
contains the HL closure �3� as a particular case. Note that the HL
model adopts the tensorial form previously proposed by Hirt �4�,
but with a reoptimized coefficient.

Numerous previous assessments for the triple-velocity correla-
tion �5–8� based on a priori comparisons to experimental or direct
numerical simulation �DNS� data have shown that the HL and the
Lumley �3� models give the best overall results, in one-
dimensional �1D� plane channel flow �9,10� and in three-
dimensional �3D� boundary layers �7�. Nevertheless, in general,
these three closures �DH, HL, and Lumley� give quite similar
results. Taking into account that all of these models are bilinear in
the Reynolds stresses and their gradients, Gatski �11� did not con-
sider this conclusion surprising. Furthermore, recent theoretical
work �12� suggested the explicit dependence on spatial gradients
of mean velocity of the triple-velocity correlation.

Concerning the pressure-diffusion term, there exist few studies
and most of them take into account only the slow part of the
pressure-velocity correlation. Indeed, the pressure-velocity corre-
lation is often neglected not only because of the lack of experi-
mental or DNS data, but also because this term does not seem
important in plane channel flow �9�. As early as 1969, Hirt �4�
proposed a function of the Reynolds stresses gradients and there-
fore modeled only the slow part of the pressure-velocity correla-
tion. The only theoretical closure for the slow part was established
in 1978 by Lumley �3� for weakly inhomogeneous flows. This
expression was however used in inhomogeneous flows by several
authors �13–16�. In 1996, Demuren et al. �15� used an elliptic
relaxation approach with the Lumley �3� closure for the slow part
of the pressure-velocity correlation and proposed a rapid-part clo-

sure for the pressure-diffusion term. More recently, Suga �17� de-
veloped a rapid-part pressure-velocity correlation model and used
the DH proposal to model both the triple-velocity correlation and
the slow-part pressure-diffusion terms.

In the present work, we develop a turbulent-diffusion closure,
including mean-velocity gradients both for the triple-velocity cor-
relation and for the pressure-diffusion term. This complete model
was added to the low-Reynolds-number second-moment closure
developed by Gerolymos and Vallet �18� �GV-RSM�, where a unit
vector pointing in the turbulence inhomogeneity direction �19� is
used to obtain a Reynolds-Stress model �RSM� completely inde-
pendent of wall topology, which can be used to simulate arbitrary
3D complex geometries.

2 Turbulence Modeling

2.1 Governing Equation. The exact transport equations for
the Favre-Reynolds-averaged Reynolds stresses in an inertial
frame of reference are

�1�

Convection Cij, and production due to the turbulence interac-
tion with the mean-flow gradients Pij, are exact terms, whereas
the diffusion dij =dij

T +dij
� due to turbulent transport dij

T =dij
u +dij

p

and to molecular viscosity dij
�, the pressure-strain redistribution

�ij, and the dissipation �̄�ij terms require modeling. In all the
models used, direct compressibility effects Kij and pressure dila-
tation �p were neglected
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�� � �̄; ui� � 0; Kij � 0; �p � 0 �2�

although Kij and �p have little influence in the subsonic flows
studied in the present work, the redistribution and the turbulent-
diffusion terms are of prime importance. With these approxima-
tions �Eq. �2��, Reynolds and Favre averages are approximately
equal

ũi � ūi; ui�uj�
˜ � ui�uj� �3�

and for this reason, we will use simple Reynolds averages
hereafter.

For all the models studied in the present work, the turbulence
length scale was determined by adopting the Launder and Sharma
�20� modified dissipation-rate �* equation, with a modified diffu-
sion term, where a tensorial diffusion coefficient is used �2,21�.

�4�

2.1.1 Gerolymos-Vallet Wall-Normal-Free RSM (GV-RSM). In
complex flows, such as a large recirculation zone, but even on a
flat plate where the normal to the wall and the distance from the
wall can be easily determined, the inhomogeneous part of the flow
is not confined only in the immediate vicinity of the solid wall.
Consequently, the use of conventional echo terms �22,23�, with
damping functions, where geometric parameters appear explicitly,
are inappropriate. Instead, it is preferable to split the redistributive
term into an homogeneous and an inhomogeneous part following
the proposal of Craft and Launder �24�.

Gerolymos and Vallet �18� and Gerolymos et al. �19� introduced
a unit vector pointing in the direction of inhomogeneity of the
turbulent field e�I to replace the geometric wall normals

e�I = eIi
e�i =

grad��T�1 − e−ReT/30�

1 + 2�A2 + A16�
	grad��T�1 − e−ReT/30�

1 + 2�A2 + A16�	 ; �T =
k3/2

�
; �5�

ReT = k2��̆��−1 �5�

where �T is the turbulence length scale and ReT is the turbulent
Reynolds number.

The model for pressure-strain and dissipation terms �which
adopts, for the homogeneous part the return-to-isotropy model of
Rotta �25� and the isotropization of production model of Naot
et al. �26�, with reoptimized coefficients functions� reads in an
inertial frame of reference

�ij − �̄�ij = − C1
H�̄�aij − C2

H
Pij −
1

3
�ijPmm� + C1

I �

k
��̄un�um� eIn

eIm
�ij

−
3

2
�̄un�ui�eIn

eIj
−

3

2
�̄un�uj�eIn

eIi
 + C2

I��nm2
H eIn

eIm
�ij

−
3

2
�in2

H eIn
eIj

−
3

2
� jn2

H eIn
eIi
 −

2

3
�ij�̄� �6�

with

C1
H = 1 + 2.58AA2

1/4�1 − e−�ReT/150�2
� �7�

A2 = aikaki; A3 = aikakjaji; A = �1 −
9

8
�A2 − A3�;

aij =
ui�uj�

k
−

2

3
�ij �8�

where the function C1
H proposed by Launder and Shima �27� con-

tains the anisotropy part of the dissipation tensor �ij by using a
dependence on the anisotropy tensor invariants A2 and A3 as sug-
gested by Lumley �3�.

Another feature of this model is the form of the functional
dependence of the rapid pressure-strain coefficient C2

H on the flat-
ness parameter A �Eqs. �9� and �8��.

C2
H = min�1,0.75 + 1.3 max�0,A − 0.55��

� A�max�0.25,0.5−1.3 max�0,A−0.55����1 − max
0,1 −
ReT

50
�

�9�

C1
I = 0.83�1 −

2

3
�C1

H − 1�	grad��T�1 − e−�ReT/30��

1 + 2A2
0.8 �	

C2
I = max�2

3
−

1

6C2
H ,0	grad��T�1 − e−�ReT/30��

1 + 1.8A2
max�0.6,A��	 �10�

where the inhomogeneous part coefficients C1
I and C2

I vanish in
homogeneous turbulence and are completely independent of wall
topology.

The pressure-diffusion term was neglected and the tensorially
symmetric expression for the triple-velocity moment introduced
by Hirt �4�, but with the Cs coefficient proposed by Hanjalić and
Launder �2� �Eq. �11�� was used to model the turbulent-diffusion
term dij

T

dij
T =

�

�x�

�− �̄ui�uj�u��� =
�

�x�
�Cs

k

�

�̄ui�um�

�uj�u��

�xm
+ �̄uj�um�

�u��ui�

�xm

+ �̄u��um�
�ui�uj�

�xm
� ; Cs = 0.11 �11�

2.1.2 Wall-Normal-Free Launder-Shima-Sharma RSM (WNF-
LSS RSM). The previous relation for the unit vector �Eq. �5��
developed by Gerolymos and Vallet �18� can be used in any ex-
isting RSM to replace the geometric unit-normals. Following this
idea, a wall-normal-free version of the Launder and Shima
second-moment closure �27,28�, using the Launder and Sharma
�20� modified dissipation-rate �* equation �Eq. �4��, was devel-
oped by Gerolymos et al. �19�. This model retains the C2

H�A� form
proposed by Launder and Shima �27� �Eq. �13�� and the Daly and
Harlow turbulent-diffusion model dij

T �DH; Eq. �14��, which take
into account a part of pressure diffusion as suggested by Lumley
�29� and Launder �30�, and confirmed for 2D supersonic flow by
Sauret and Vallet �16�. The geometric-normals were replaced by
the inhomogeneity-direction-indicator e�I �Eq. �5��. The functions
C1

I and C2
I were then optimized to obtain the correct plane-

channel-flow mean velocity and Reynolds-stress profiles �19�. The
model can be summarized as

C1
H = 1 + 2.58AA2

1/4�1 − e−�ReT/150�2
� �12�

C2
H = 0.75�A �13�

dij
T =

�

�x�
�Cs

k

�

�̄u��um�

�ui�uj�

�xm
� ; Cs = 0.22 �14�

C1
I = 0.90�1 −

2

3
�C1

H − 1�	grad��T�1 − e−�ReT/30��
1 + 1.8A2

0.8 �	
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C2
I = max�2

3
−

1

6C2
H ,0	grad��T�1 − e−�ReT/30��

1 + 1.8A2
max�0.6,A��	 �15�

where the coefficients C1
H, C2

H, C1
I , C2

I are used in �Eq. �6��.

2.2 Triple-Velocity Correlations. The turbulent diffusion
term dij

T present in the exact transport equations for the Favre-
Reynolds-averaged Reynolds stresses is due to velocity fluctua-
tions dij

u �divergence of the triple-velocity moments� and to pres-
sure fluctuations dij

p �divergence of the pressure-velocity
correlations�

dij
T = dij

u + dij
p =

�

�x�

�− �̄ui�uj�u��� +
�

�x�

�− p�uj��i� − p�ui�� j��

�16�

In a previous work �16�, we have used the formulation suggested
by Lumley �3� for modeling the triple-velocity correlation term
−ui�uj�u�� with the coefficients proposed by Schwarz and Bradshaw
�7�

− ui�uj�u�� = Cs1
k

�
Gij� + Cs2

k

�
�Gimm� j� + Gjmm�i� + G�mm�ij�

�17�

Cs1 = 0.098; Cs2 = 0.01265;

Gij� = ui�uk�
�uj�u��

�xk
+ uj�uk�

�ui�u��

�xk
+ uk�u��

�ui�uj�

�xk
�18�

Nonetheless, it should be noted that the previous models do not
explicitly contain mean-flow velocity gradients. Younis et al. �12�

have noted this theoretical drawback in the triple-velocity corre-
lation closures and suggested that the triple-velocity correlation
model should be of the following form:

ui�uj�u�� = Fij��uk�um� ,�,
�uk�um�

�xn
, S̄mn,W̄mn

S̄mn =
1

2
� �ūm

�xn
+

�ūn

�xm
 ; W̄mn =

1

2
� �ūm

�xn
−

�ūn

�xm
 �19�

where S̄mn and W̄mn are respectively the mean flow rate-of-strain
and vorticity tensors. Younis et al. �12� have suggested taking into
account the dependence of triple-velocity correlations on mean-
flow gradients. Such that the final model corresponded to the HL

model �2� plus terms bilinear in S̄mn and �uk�um� /�xn. It should be
noted the Hanjalić and Launder �2� model �Eq. �11�� corresponds
to the first term of the Lumley �3� model �Eq. �17�� with Cs1
=0.11 and Cs2=0.

The model proposed by Younis et al. �12� is

− ui�uj�u�� = Cs1
k

�
�ui�uk�

�uj�u��

�xk
+ uj�uk�

�ui�u��

�xk
+ uk�u��

�ui�uj�

�xk


+ Cr1
k3

�2�S̄ki

�uj�u��

�xk
+ S̄kj

�u��ui�

�xk
+ S̄k�

�ui�uj�

�xk


S̄ij =
1

2
� �ūi

�xj
+

�ūj

�xi
 ; Cs1 = 0.11; Cr1 = not given �20�

It is quite straightforward to evaluate the triple-velocity correla-
tion models by conducting a priori tests for fully developed plane
channel flow and comparing to available DNS data. However, in

Fig. 1 A priori comparison of three triple-velocity correlation closures ui�uj�u��
+=ui�uj�u�� /u�

3 with the
DNS data of Moser et al. †10‡ for fully developed plane channel flow „Re�=180; y+=yu� / �̄…
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fully developed plane channel flow, where v̄= w̄=0 and the only

nonzero component of the mean flow rate-of-strain tensor is S̄xy

= S̄yx= �1/2��dū /dy�, so that the additional term proposed by You-
nis et al. �12� to the HL model only influences the correlations
u�u�v� and u�v�v�, which include the fluctuating velocity compo-
nent u�. Furthermore, this additional term influences the flow
mainly close to the wall where the mean flow velocity gradients
are important. Considering that the HL model is quite satisfactory
close to the wall for the prediction of the u�u�v� and u�v�v�
correlations, the model suggested by Younis et al. �12� gives re-
sults very close to the HL model for this test case.

In the present work, we have explored the possibility of devel-
oping a model that corresponds to the Lumley �3� triple-velocity

correlations model plus a term containing S̄ij in order to have a
model available in 3D complex flows. We propose the following
form:

Gij� = ui�uk�
�uj�u��

�xk
+ uj�uk�

�ui�u��

�xk
+ uk�u��

�ui�uj�

�xk
;

Gij�
r = S̄ki

�uj�u��

�xk
+ S̄kj

�u��ui�

�xk
+ S̄k�

�ui�uj�

�xk

S̄ij =
1

2
� �ūi

�xj
+

�ūj

�xi
 �21�

with the following coefficients, which were optimized by a priori
assessments for fully developed plane channel flows �Figs. 1–3�,

Cs1 = 0.098; Cs2 = 0.01265; Cr1 = 0.0001; Cr2 = 0.0001

2.3 Pressure-Velocity Correlations

2.3.1 Theory. The redistribution tensor is the most important
modeled term. The starting point for developing closures for �ij
is, under the assumption of incompressible flow, the Poisson equa-
tion for the fluctuating pressure �31�

�22�

equation �22�, obtained for �̄=const from the fluctuating momen-
tum equation, introduces the idea that solenoidal pressure fluctua-
tions, associated with the fluctuating velocity field, are generated
by two separate mechanisms: �i� by the interaction of velocity
fluctuations with mean-velocity gradients �called fast or rapid
pressure fluctuations because they interact immediately with an
imposed mean-velocity gradient� and �ii� by the turbulence-
turbulence interaction �called slow pressure fluctuations�. This

Fig. 2 A priori comparison of three triple velocity correlation closures ui�uj�u��
+=ui�uj�u�� /u�

3 with the
DNS data of Moser et al. †10‡ for fully developed plane channel flow „Re�=395; y+=yu� / �̄…
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idea of distinguishing between pressure fluctuations associated
with mean-flow gradients �pr�� and pressure fluctuations that are
associated with turbulence-turbulence interactions only �ps�� is ap-
plied in general for all the correlations that contain the fluctuating
pressure.

The Poisson-equation for pressure �Eq. �22�� can be solved us-
ing space integrals and surface integrals �31,32�

1

�̄
p��x�� =

1

�̄
�pr� + ps�� =

1

2	
�� �

V


 �ū�

�xk

�uk�

�xl

� dv�x��
�x� − x��

+
1

4	
�� �

V


 �2uk�ul�

�xl�xk
−

�2uk�ul�

�xl�xk
� dv�x��

�x� − x��

+
1

4	�̄
� �

�V


 1

�x� − x��
�p�

�n
− p�

�

�n

 1

�x� − x����dS

�23�

where p, u are the pressure and velocity at point x�, and the volume
and surface integrals are taken over all other points r� where the
pressure and velocity are p and u. Note that if Eq. �23� is premul-
tiplied by a function of x�, this function can be entered into the
integrals which are over r�. Obviously, in the case of unbounded
flow, where �V is very far away �at infinity; �r�−x��→
�, only the
volume integrals remain, the surface integral going to zero. On the
other hand, for flow near-solid boundaries, the surface integral
indicates that the unsteady pressure field reacts to the presence of
the wall �surface integral; n is the normal distance from the wall�.
Terms related to the surface integral are usually called wall-echo
terms, since for an infinite plane solid boundary they can be re-
lated to reflection from the wall �method of images �32–34��. Ob-
viously, the reflection term �surface integral� contains contribu-

tions from �and to� both rapid and slow pressure.
By multiplying the integral equation for the fluctuating pressure

by 2Sij� �again in the context of incompressible flow, where Sii

=Sii� =0�, and averaging, an integral formula is obtained for �ij

�ij�x�� = �ijr + �ijs � �ij2 + �ij1 =
1

�̄
�p�
 �ui�

�xj
+

�uj�

�xi
�

=
1

2	
�� �

V


 �ūl

�xk

�uk�

�xl


 �ui�

�xj
+

�uj�

�xi
�� dv�x��

�x� − x��

+
1

4	
�� �

V

�
 �ui�

�xj
+

�uj�

�xi
�
 �2uk�ul�

�xl�xk
−

�2uk�ul�

�xl�xk
�

�
dv�x��
�x� − x��

+
1

4	�̄
� �

�V

��
 �ui�

�xj
+

�uj�

�xi
�
 1

�x� − x��
�p�

�n
− p�

�

�n

 1

�x� − x����dS

�24�

The last term is obviously associated with reflection from the wall
�8,23,31� �also known as wall-blockage or echo term�. It is often
modeled using the normal-to-the-wall-direction and the distance
from the wall, although in the present work we focus on wall-
normal-free models.

In the same way as far the redistribution term �ij, the pressure-
velocity correlation, which plays a part in the turbulent-diffusion
process �Eq. �16��, can be split into a slow part �designated by the
superscript 1� and a rapid part �designated by the superscript 2�
plus an echo term �designated by the superscript w�

Fig. 3 A priori comparison of three triple velocity correlation closures ui�uj�u��
+=ui�uj�u�� /u�

3 with the
DNS data of Moser et al. †10‡ for fully developed plane channel flow „Re�=590; y+=yu� / �̄…
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�25�

2.3.2 Previous Works. The simplest way to take into account
the pressure-diffusion process dij

p is to use an asymmetric
turbulent-diffusion closure �since the exact turbulent-diffusion
term is not symmetric; Eq. �1��. The Daly and Harlow proposal
�29,30� �Eq. �14�� is such a model. However, the DH model is not
mathematically correct for 3D complex flows �29�. Furthermore,
by not using mean-velocity gradients in the expression, the DH
closure neglects the rapid part of the pressure-diffusion term �Eq.
�25��.

In 1969, Hirt �4� proposed a symmetric triple-velocity correla-
tion closure �Eq. �11� with Cs=0.33, which is the tensorial form
later used by Hanjalić and Launder �2� in the HL model� and an
explicit model for the slow part of pressure-velocity correlation

1

�̄
p�ui�

�1� = −
k2

�

�ui�up�

�xp
�26�

Fig. 4 A priori comparison of pressure-velocity correlation closures p�ui�=p�ui�
„1…+p�ui�

„2…
„Eqs. „30…

and „31…… with the DNS data of Moser et al. †10‡ for fully developed plane channel flow „Re�=180, 395,
590…; note that p�u�+ is one-order of magnitude larger than p�v�+

„p�ui�
+=p�ui� / „�̄u�

3
…; y+=yu� / �̄…
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In 1978, Lumley �3� used Fourier transforms to obtain a homo-
geneous expression for the slow part whose validity is limited to
weakly inhomogeneous flows

1

�̄
p�ui�

�1� = −
1

5
ui�up�up� �27�

where the triple-velocity correlation is modeled by the Lumley �3�
closure �Eq. �17��. Thus, following the Lumley proposal, the
pressure-diffusion term is modeled as �p�ui�

�2��0�

dij
p = dij

p�1� =
�

�x�

�− p�uj�
�1��i� − p�ui�

�1�� j�� =
�

�x�

�0.2�̄uj�up�up��i�

+ 0.2�̄ui�up�up�� j�� �28�
This theoretical formulation, in its original or modified forms, was
used by several authors �13–16�.

Recent DNS databases over a backward-facing step �35� or be-
hind a rectangular trailing edge �36� have shown the importance
of the turbulent-pressure diffusion term in recirculating flows. In
1996, Demuren et al. �15� developed a model for the rapid part of
the pressure-diffusion term

dij
p�2� =

�

�x�

�− p�uj�
�2��i� − p�ui�

�2�� j�� = Cr
uj�um�
�ūm

�x�

�i�

+ ui�um�
�ūm

�x�

� j�� ; Cr � �0.1,0.3� �29�

whereas the slow part was modeled by using a nonlocal elliptic
relaxation approach with the Lumley �3� model �Eq. �27�� for the
local source term. They used the Mellor and Herring �37� proposal
�which is a simplified version of the HL model� to calculate the
triple-velocity correlation, which led to an underprediction of the
pressure-diffusion slow part p�ui�

�1� in plane mixing layer �38�.
In 2004, Suga �17� proposed a linear function of the mean-

velocity gradient, the Reynolds stresses, and the length-scale vec-
tor to model the rapid part of the pressure-velocity correlation
p�ui�

�2�.

2.3.3 Present Closure. We have developed, based on the work
of Lumley �3� �Eq. �21��, a near-wall model for the slow part of
the pressure-velocity correlation

Fig. 5 A priori comparison of pressure-diffusion closures d ij
p+=�„−p�ui�

+�jy−p�uj�
+�iy… /�y+

„d ij
p+

=d ij
p / „u�

4 / �̄…; y+=yu� / �̄… with the DNS data of Moser et al. †10‡ for fully developed plane channel flow
„Re�=180, 395, 590…; note that d xy

p+ is one-order of magnitude larger than d yy
p+
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1

�̄
p�ui�

�1� = − CSPui�up�up�
�1� = − CSP�− CS1

k

�
Gimm − CS2

k

�
�Gimm�pp

+ 2Gpmm�ip��
Gij� = ui�uk�

�uj�u��

�xk
+ uj�uk�

�ui�u��

�xk
+ uk�u��

�ui�uj�

�xk
CS1 = 0.098;

CS2 = 0.01265; CSP = 0.085�1 + min�0.5,Amax�0.25,2�1−6A����
�30�

where the coefficient CSP of the pressure diffusion model was
modified to account for near-wall effects by using a function of
the flatness parameter of Lumley �3� and of the turbulent Rey-
nolds number �Eq. �30��. Indeed, the original value proposed by
Lumley �3� CSP=0.2 �Eq. �28��, which means that the pressure-
diffusion contribution equals to −20% of the triple-velocity corre-
lation, was determined from mathematical considerations for ho-

mogeneous flows, and in consequence this value is too high close
to the wall �cf. Sec. 3.3, Fig. 5�. Furthermore, the coefficient CSP
should not be zero near the wall because the pressure-diffusion
term is important in this zone in detached flows �35�. The pro-
posed coefficient CSP value is 0.1275, except close to the wall
where it is sharply damped to a value of 0.085 �Eq. �30��. This
coefficient was developed by Sauret and Vallet �16� for the slow
part of the pressure diffusion and was validated in several com-
plex 3D flows. We used the same near-wall coefficient function
CSP to develop a rapid part closure

1

�̄
p�ui�

�2� = − CSP�− �2Cr1 + 2Cr2�
k3

�2�S̄ik

�k

�xk
+ S̄pk

�ui�up�

�xk
�

Cr1 = 0.0001; Cr2 = 0.0001; CSP = 0.085�1

+ min�0.5,Amax�0.25,2�1−6A���� �31�

We also used the recalibrated coefficient C1
I and C2

I proposed by
Sauret and Vallet �16�

Fig. 6 A priori comparison of turbulent-diffusion closures dij
T=dij

u+dij
p
„dij

T+=dij
T/ „u�

4 / �̄…; y+=yu� / �̄… with
the DNS data of Moser et al. †10‡ for fully developed plane channel flow „Re�=180, 395, 590…

Journal of Applied Mechanics NOVEMBER 2007, Vol. 74 / 1149

Downloaded 04 May 2010 to 171.66.16.42. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



C1
I = 0.83�1 −

2

3
�C1

H − 1�	grad��T�1 − e−�ReT/30��

1 + 2.05A2
0.8 �	

C2
I = max�2

3
−

1

6C2
H ,0	grad��T�1 − e−�ReT/30��

1 + 1.5A2
max�0.6,A� �	 �32�

It should be noted that the present model does not take into
account the echo part of the pressure-velocity correlation
�p�ui�

�w��0; Eq. �25��. The echo part is expected to be important
in the near-wall region and is the subject of ongoing research. The
omission of this term should be kept in mind when comparing the
model to data very close to the wall, as will be done next.

3 A Priori Assessments of Turbulent Diffusion Models
in Plane Channel Flow

3.1 Triple-Velocity Correlations Models. The present model
�Eq. �21�� for the triple-velocity moments was evaluated a priori
for fully developed plane channel flows at three different Rey-
nolds numbers �Re�=180,395,590� �10�. We have compared
�Figs. 1–3� the present model, the HL model and the Lumley
model with DNS data �10�.

Unlike the HL model, the Lumley proposal does not predict the
correct asymptotic behavior of the u�v�v� component. In conse-

quence, the present model containing a dependence on S̄ij is able
to adjust the asymptotic behavior and still preserve the compara-
tively good prediction of the u�v�v� component away from the
wall. The present model slightly improves the w�w�v� and v�v�v�
components without changing the u�u�v� component for the three
Reynolds numbers Re� tested. It can be seen that this model gives
the best overall results.

3.2 Pressure-Velocity Correlation Models. The previous
study �Sec. 3.1� highlights the potential improvement in triple-
velocity correlation modeling by including the effects of the mean
flow rate-of-strain tensor in the closure. The importance of these
terms suggests that by taking them into account the pressure dif-
fusion model �Eq. �31�� will potentially improve the prediction of
3D and secondary flows, where mean flow velocity gradients are
important. To this purpose, we have pursued the investigation by
adding a rapid-part closure �p�ui�

�2�; Eq. �31�� to the near-wall
slow-part pressure diffusion model �Eq. �30��.

We present an a priori assessment of the slow and the rapid
parts of the pressure-velocity correlation model �Fig. 4� for fully
developed plane channel flows �10� at three different Reynolds
numbers �Re�=180, 395, 590�.

The inclusion of the rapid part p�ui�
�2� improves the pressure-

velocity correlation prediction, especially for the p�u� profiles
close to the wall.

Considering that the slow part, which is a direct function of the
triple-velocity correlation closure, is dominant especially for the
p�v� profiles, the present model predicts the correct shape for p�u�
�not for p�v� near the wall�, but underestimates the magnitude of
the correlation.

For example, for Re�=180, the p�v�+ profile prediction is in
agreement with DNS data for y+�30, but fails to reproduce the
correct sign of the peak near the wall �y+20�.

This is partly attributed to the unsatisfactory triple-velocity-
correlation prediction near the wall �Fig. 1�, since in the model

1

�̄
p�v��1� = − CSP�u�u�v� + v�v�v� + w�w�v�� �33�

and certainly to the absence of the echo term, which should be
important near the wall for the v�v� component.

3.3 Pressure-Diffusion and Turbulent-Diffusion Models.
We have compared the Lumley proposal �Eq. �28�� and the present
model for the pressure-diffusion term, which is the divergence of

the pressure-velocity correlation �Fig. 5�.
This comparison is very important because it is term �dij

p � and
not the pressure-velocity correlation p�ui� that appears in the
Reynolds-stress transport equation �Eq. �1��. The pressure-
diffusion dxy

p+ of the u�v� component is in good agreement with
DNS data except for the viscous sublayer zone close to the wall.
The Lumley model �Eq. �28�� overpredicts both peaks �with an
erroneous sign for the v�v� component�, especially the one close
to the wall, indicating that the slow-part coefficient of 0.20 is too
high and that the rapid-part effect is significant enough to be taken
into account. However, the turbulent diffusion both for the u�v�
and the v�v� components does not vanish at the wall contrary to
the triple-velocity correlation, and the addition of an echo term is
required.

Finally, to conclude this a priori assessment, we compared the
present model to the turbulent-diffusion closures dij

T proposed by
Lumley �3� and Hanjalić and Launder �2� �Fig. 6�.

The Lumley model gives the worst prediction near the wall for
the u�v� and v�v� components, mainly due to the too high value
of 1 /5 for the slow-part coefficient of the pressure-velocity clo-
sure �Eq. �27��. Furthermore, the Lumley proposal neglects the
rapid-part both of the triple-velocity and the pressure-velocity
correlations.

Although, the Hanjalić and Launder �2� model does not take
into account the pressure-diffusion term dij

p , it gives the best over-
all prediction for the turbulent-diffusion dxy

T of the u�v� compo-
nent. The present model, which uses a near-wall coefficient func-
tion CSP both for the slow and the rapid parts of the pressure-
velocity correlation closure, improves on the Lumley model
prediction. Note also that the present model captures the near-wall
peak �y+�7� in the dxy

T prediction. However, all three of these
models fail near the wall �y+10�, indicating the necessity to
develop new pressure-diffusion closures with the correct normal-
to-the-wall gradient. An improvement of the triple-velocity corre-
lation is also necessary to give satisfactory prediction of the tur-
bulent diffusion of the v�v� component.

4 Validation
The present model was then validated against two 3D configu-

rations: �i� developing turbulent flow in a square duct �39� and �ii�
high subsonic flow in an aircraft engine inlet S-duct �40�. Care

Fig. 7 Comparison of measured †39‡ streamwise evolution of
centerline velocity „y=z=a… with computations using four dif-
ferent RSMs for developing flow in a square duct „ReB
=250,000, Tui

=1%, �Ti
=50 mm, �yi

=�zi
=0.1 mm, �yw

+ =�zw
+ <0.5;

18Ã106 points grid discretizing 1/4 of the square duct…
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was taken to compare to previous wall-normal-free RSM variants,
which use simpler models for dij

T. The computations were per-
formed using the RSM-3D implicit upwind compressible flow
solver �41,42�.

4.1 Developing Turbulent Flow in a Square Duct. This test
case, studied experimentally by Gessner and Emery �39�, is very
interesting for evaluating the capacity of a model to correctly
predict anisotropy-driven secondary flows, where stream-wise
vorticity is important. The experimental configuration �39,43�,
consists of a square duct �height Ly =Lz=2a=0.254 m, length Lx
=2a�100=25 m�. The flow is quasi-incompressible with bulk
Reynolds number ReB=250,000 �ReB= ūBDh�−1, where ūB is the
bulk velocity, Dh=2a is the hydraulic diameter of the duct and � is
the kinematic viscosity�. The numerical computations were per-
formed at atmospheric total inlet conditions �Tti

=288 K, pti

=101,325 Pa� with a turbulence intensity, Tui
=1%, and a turbu-

lence length scale, �Ti
=50 mm. The outflow pressure was ad-

justed to obtain the correct ReB �po=0.995� pti
, corresponding to

an inlet Mach number at centerline MCLi
=0.0516�, and the inflow

boundary layer was adjusted to a value of �i=0.1 mm to obtain a
close fit to the experimental centerline velocity in the region
x /Dh� �0,10� �Fig. 7�.

This a well-known test case and has been computed by Gessner
and Emery �39� using their ARSM closure, and more recently by
So and Yuan �43� and Gerolymos et al. �19� using wall-normal-
free RSM �with an inflow boundary-layer thickness �yi

=�zi

=0.5 mm too high�. Preliminary tests showed that very fine grids
were needed to obtain grid-converged results. The results pre-
sented were obtained on a 18�106 points grid �Ni�Nj �Nk

Fig. 8 Comparison of measurements †39‡ at the symmetry-plane „z=a, along y… and grid-converged computations using the
four wall-normal-free RSMs at various axial locations x /Dh, for developing turbulent flow in a square duct „ReB=250,000, Tui
=1%, �Ti

=50 mm, �yi
=�zi

=0.1 mm, �yw
+ =�zw

+ <0.5; 18Ã106 points grids discretizing 1/4 of the square duct…
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=Nx�Ny �Nz=801�149�149� discretizing 1/4 of the duct
with symmetry conditions at the y- and z-wise symmetry planes.
In the y and z directions, the grid was stretched geometrically
�65% of the Ny =Nz points were stretched with ratio ry =rz
=1.067, and the remaining 35% were equidistributed in the cen-
terline region�.

Previous work on this configuration �19� has highlighted the
importance of the turbulent diffusion in correctly predicting the
developing 3D turbulent boundary layer entrainment, and as a
result, the peak in the centerline velocity ūCL at x�40 Dh �Fig. 7�.
In order to assess the relative importance of two modeling param-
eters: �i� redistribution coefficient C2

H and �ii� turbulent-diffusion,
we compare four RSM variants, all based on quasi-linear isotro-
pization of production and return to isotropy models for the redis-
tribution term �ij �Eq. �6��.

1. Wall-normal-free version of the Launder-Shima-Sharma
Reynolds-stress model �19� �WNF-LSS RSM�, which has a
baseline C2

H=0.75�A and the DH model for the turbulent-
diffusion dij

T �Sec. 2.1.2�.
2. Wall-normal-free Reynolds-stress model of Gerolymos and

Vallet �18� �GV-RSM� which uses an optimized C2
H�A� �Eq.

�9��, the HL closure for the triple-velocity correlation and
neglects the pressure diffusion dij

p �Sec. 2.1.1�.
3. GV-DH test-model, which uses C2

H�A� of GV-RSM �Eq. �9��
and the DH model for the turbulent-diffusion dij

T. This is a
test model �19�, not recommended for practical use, which
was developed for the single purpose of testing the influence
of the turbulent-diffusion closure.

4. Present model, which uses the C2
H�A� of GV �Eq. �9�� and

Fig. 9 Comparison of measurements †39‡ at the corner-bisector „along yd… and grid-converged computations using the four
wall-normal-free RSMs at various axial locations x /Dh, for developing turbulent flow in a square duct „ReB=250,000, Tui

=1%,
�Ti

=50 mm, �yi
=�zi

=0.1 mm, �yw
+ =�zw

+ <0.5; 18Ã106 point grids discretizing 1/4 of the square duct…
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Fig. 10 Iso Mach-number in the S-duct of Wellborn et al. †40‡, computed with the GV-RSM „ReCL
=2.6Ã106, 3.8Ã106 point grids…

Fig. 11 Comparison of computed and measured pressure coefficient Cp along the circumferential
�EXP direction at four planes normal to the duct centerline, using four Reynolds-stress models „

ReCL=2.6Ã106, 3.8Ã106 point grids…
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includes the new model for the turbulent diffusion dij
u �Eq.

�21�� and dij
p �Eqs. �30� and �31��, containing the influence of

the mean-velocity gradients.

The important contribution of the redistribution coefficient C2
H

is clearly seen �Fig. 7� by comparing the WNF-LSS model and the
three other models, which use the C2

H�A� of GV �Eq. �9��. The new
model noticeably improves the prediction of this flow, particularly
in the peak region x /Dh�40 compared to GV-RSM prediction
�Fig. 7�.

Detailed comparison of velocity and Reynolds-stresses profiles
�Figs. 8 and 9� shows that the use of the particular form of the
rapid redistribution coefficient C2

H, and enhances the ability of the
model to predict the correct turbulence structure. The inclusion of
the influence of the mean-velocity gradients in the turbulent-
diffusion term is mainly felt near the wall and at the centerline.

4.2 Diffusing 3D S-Duct. The second configuration com-
puted is a diffusing S-duct of circular cross section �Fig. 10�,
studied experimentally by Wellborn et al. �40�. This configuration
was meshed using 3.8�106 points grid, consisting of two struc-
tured grid blocks �44�. The inflow �x=−0.2 m� and outflow �x=
+2 m� stations are of circular cross section with radii r1
=10.21 cm at inflow, and r2=12.57 cm at outflow. Inflow condi-
tions �at x=−0.2 m, sCL/d1=−9.8� were adjusted to obtain the
experimentally measured conditions at plane A located at sCL/d1
=−0.50, sCL being the centerline curvilinear coordinate along the

duct centerline and d1=2r1=0.2042 m the inlet section diameter.
All the computations were obtained using the following experi-
mental inflow conditions:

Tti
= 296.4 K; pti

= 111,330 Pa

Tui
= 0.65 % ; �Ti

= 50 mm; �i95
= 7.10 mm; �i = 0.6

�34�

where Tti
is the inlet total temperature, pti

is the inlet total pres-

sure, Tui
=�2/3kiVi

−1 is the inlet freestream turbulence intensity,
�Ti

=ki
2/3�i

−1 is the inlet freestream turbulence-length scale, �i95
is

the inlet boundary-layer thickness, which corresponds to 95% of
the centerline velocity VCL, and �i is Coles wake parameter used
to define the inflow profile applied as boundary condition �45�.
The outflow static pressure po=98,100 Pa was adjusted to obtain
the experimental static pressure coefficient Cp= �p− pCL� / �ptCL
− pCL�=0.466 at s /d1=8.46.

Comparison of computed and measured results �Figs. 11 and
12�, and Table 1 using four RSMs, indicate that the GV-RSM �18�
gives quite satisfactory results as do all of the three models which
use the modified coefficient C2

H�A� of the GV-RSM. The
turbulent-diffusion term does not substantially influence the re-
sults for this configuration. On the other hand, the standard Laun-
der and Shima model �C2

H=0.75�A� substantially underpredicts
separation.

Fig. 12 Comparison of computed and measured pressure coefficient Cp along the centerline sCL/d1 directions at
three circumferential angles �EXP using four Reynolds-stress models „ReCL=2.6Ã106, 3.8Ã106 point grid…, with a
zoom in the experimental separated flow region between sCL/d1=2.02 and sCL/d1=4.13
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5 Conclusions
The present work examined the effect of taking into account the

mean-velocity gradient on the models for the turbulent-diffusion
term in second-moment closures. A model for the triple-velocity
correlation and the pressure-diffusion term including mean-
velocity gradients was developed and examined both a priori and
a posteriori for �i� simple plane channel flows, �ii� developing 3D
turbulent flow in a square-duct, and �iii� flow in an aircraft engine
inlet S-duct.

Taking into account the mean velocity gradients on the models
for the triple-velocity correlation for fully developed plane chan-
nel flow �Re�=180, 180, 396, and 590� improves the prediction of
the asymptotic behavior near the wall and gives the best overall
results compared to the HL and Lumley proposals. The explicit
modeling of the rapid part of the pressure-velocity correlation
gives better prediction of the pressure-diffusion term than the
Lumley model. However, the model proposed for the rapid part of
the pressure-diffusion term is a function of triple-velocity correla-
tion which vanish at the wall contrary to the pressure-velocity
correlation. Further developments, particularly for the wall-echo
effect in the pressure-diffusion term, are necessary to predict the
correct wall value of the turbulent-diffusion term.

A priori assessments for fully developed plane channel flow are
very useful for developing modeling expressions for unclosed
terms. Nevertheless, this type of assessment is not sufficient for
evaluating models where all terms in the transport equations are
coupled, and validations in 3D complex flows are necessary. The
complete model proposed for the turbulent-diffusion term, which
includes the mean-velocity gradients, improves the prediction of
the secondary flow in a square duct. On the other hand, for the
S-duct, where large separation is present, the redistribution pro-
cess seems more important than turbulent diffusion.
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Minimizing and Restricting
Vibrations in High-Speed
Cam-Follower Systems Over a
Range of Speeds
Over a range of cam speeds, the problems of minimizing and restricting vibrations in
high-speed cam-follower systems over a range of speeds are formulated as constrained
optimization problems. A universal Hermite cam displacement is suggested. The combi-
nation of these methods can form a general design environment. In this environment, the
designer can arbitrarily select one to formulate as the objective function from quantifi-
able cam properties such as the residual vibration, primary vibration, pressure angle,
radius of curvature, and contact stress, while the rest of quantifiable cam properties can
be formulated as the design constraints. �DOI: 10.1115/1.2723812�

1 Introduction
The Polydyne approach �1,2� has been a successful method in

eliminating residual vibrations at one or multiple design cam
speeds. However, in many cases, the working speed of cams is not
one or several fixed speeds but must be a range of speeds. To
reduce residual vibrations over a range of speeds, Kwakernaak
and Smit �3� introduced a linear programming and a quadratic
optimization procedure. Kanzaki and Itao �2� reduced residual vi-
brations over a wider range of speeds by selectively extinguishing
residual vibrations at adjacent design speeds. Wiederrich and Roth
�4� used a Lagrange multiplier technique to minimize the output
acceleration. Fabien, Longman, and Freudenstein �5� applied an
optimal control theory to the cam design. Chew and Chuang �6�
adopted a generalized Lagrange multiplier technique to minimize
residual vibrations.

On the other hand, the traditional cam design process includes
the specification of motion curves for the follower and the subse-
quent calculation of the cam profile. Once the profile is generated,
the radius of curvature, pressure angles, and other properties of
the profile are checked for feasibility, and the process is repeated
until a feasible design is generated. Although there are such stan-
dard motion curves as 4-5-6-7 polynomial for choosing, they can-
not always satisfy the actual needs. The universal motion curves
like the B-splines �8� have made up for lack of standard curves in
quantity to a great degree, but the case that a feasible design may
not be obtained without several repetitions is not improved, let
alone a best design under the given conditions. In order to make
every design that is not only a feasible but also the best one, an
optimization method should be introduced. There have been some
successful examples �2–7� that optimization technology is applied
to cam design. Nevertheless, the majority of them are aimed at the
specified conditions.

This paper reports the research results of minimizing or restrict-
ing residual vibrations and primary vibrations over a range of
speeds. Minimizing vibrations and restricting vibrations are the
different patterns to control vibrations. Minimizing vibrations is to
obtain the cam profiles with the lowest vibration over a range of
speeds, while restricting vibrations is to obtain the cam profiles
with vibrations within the specified value over a range of speeds.
Except for the method of minimizing residual vibrations, the rest

of methods have never been reported. In these methods, the con-
trol of vibrations is direct and other quantifiable cam properties
can be controlled directly. Also, this paper suggests a universal
cam displacement represented by Hermite curves, and describes
the use of it in optimal cam design. The used optimization method
is the Complex algorithm �9�, while the Simplex algorithm �10� is
used when there is no constraint.

2 Dynamic Response of the Follower System

2.1 System Model. In this research, a linear, single-DOF
lumped parameter model of a high-speed cam-follower system is
used. This model is introduced by Kanzaki and Itao �2� and has
been adopted in other researches �5,6,11�. This model consists of
two springs, one mass and one dashpot. The output mass m mod-
els the mass of the follower; the stiffnesses ks and kf represent the
stiffnesses of the return spring and the follower, respectively; and
the damping coefficient c models the viscous friction within the
system. The equation of motion of the model is often given in
normalized coordinates,

Ÿ��� + 2��2���Ẏ��� + �2���2Y��� = �2���2Yc��� �1�

where the dimensionless displacement of the output mass m is Y
=y /h, and the dimensionless displacement of the cam is Yc
=yc /hc. h and hc are the maximum displacements of the output
mass and cam, respectively. The dimensionless output speed is

Ẏ =dY��� /d�, and the dimensionless output acceleration is Ÿ
=d2Y��� /d�2. The dimensionless time is �= t / t1, and t1 is the rise
time of the cam. The damping ratio is �=c / �2m�0�, the natural
frequency, �0=��ks+kf� /m, the period, t0=2� /�0, and the speed
ratio, �= t1 / t0. Since the dimensionless time is inversely propor-
tional to the speed ratio, a decrease in the speed ratio denotes an
increase in cam speed.

In the following section, a method for computing vibrational
responses will be presented.

2.2 Residual Vibration and Primary Vibration. During the
rise or fall of the output motion, a vibrational response exists
because of the dynamics of the system. This will be referred to as
the primary vibration. The vibrational response may persist into
the dwells and will be called residual vibration.

For calculating vibrational responses, we can substitute the dy-
namic displacement deviation, U=Y −Yc into Eq. �1� to get a vi-
brational response equation
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Ü��� + 2�a1U̇��� + a1
2U��� = − Yc

¨ ��� − 2�a1Yc
˙ ��� �2�

where a1=2��. It is obvious from Eq. �2� that the vibrational
response is governed by the cam velocity and acceleration if the
parameters for mass, springs and damper are fixed. The solution
of Eq. �2� yields the primary vibration at any speed ratio �.

It is often difficult to solve the dynamic deviation U when the

functions Ÿc and Ẏc are complicated. In order to obtain a common
method of calculating dynamic responses, which is effective not
only for the cam acceleration and velocity represented by simple
functions like the polynomial, but also for the cam acceleration
and velocity represented by parametric curves like B-spline, we
have used a numerical method to solve Eq. �2�.

The general solution of the homogeneous equation of Eq. �2� is

Uh��� = e−�a1��c1 cos�a2�� + c2 sin�a2��� �3�

where a2=a1
�1−�2. In order to obtain the particular solution of

Eq. �2�, we disperse the functions of the cam acceleration and
velocity. As shown in Fig. 1, we use ladder curves of a certain tiny
time interval ��i to replace the cam acceleration and velocity
curves, respectively. In every time interval, it can be approxi-

mately considered that Ÿci and Ẏci are all constant and they are
respectively equal to the cam acceleration and velocity of the
midpoints of time interval ��i=�i−�i−1.

Let the particular solution of Eq. �2� be

Up��� = A�const . � �4�

then

Up
˙ = Up

¨ = 0 �5�

Substitute Eqs. �4� and �5� into Eq. �2�, then A is given by

A = − �Yc
¨ + 2�a1Yc

˙ �/a1
2 �6�

so that the general solution of Eq. �2�, which is the sum of homo-
geneous and particular solution, is

U��� = e−�a1��c1 cos�a2�� + c2 sin�a2��� + A �7�

From Eq. �7�, we can obtain

U̇��� = e−�a1��c1�− �a1 cos�a2�� − a2 sin�a2��� + c2�− �a1 sin�a2��

+ a2 cos�a2���� �8�

Supposing Ui−1 and U̇i−1 corresponding to time �i−1 are known,

since Ÿci and Ẏci begin to excite cam systems at time �i−1, the
exciting time corresponding to �i−1 is �=0. The boundary condi-
tions of Eqs. �7� and �8� can then be shown to be

U�����=0 = Ui−1

U̇�����=0 = U̇i−1 �9�

Substituting the boundary conditions into Eqs. �7� and �8�, c1 and
c2 are determined, i.e.,

c1 = Ui−1 + �Ÿci + 2�a1Ẏci�/a1
2

c2 = �U̇i−1 + �a1c1�/a2 �10�

Substitution of c1 and c2 into Eqs. �7� and �8� leads to a numerical
solution of Eq. �2�,

Ui = �a4 cos�a2��� + a5 sin�a2����a6 − a3

U̇i = ��a2a5 − a1a4��cos�a2��� − �a2a4 + a1a5��sin�a2����a6

�11�

where a3= �Ÿci+2a1�Ẏci� /a1
2, a4=a3+Ui−1, a5= �U̇i−1+a1a4�� /a2,

a6=e−a1���.
When Eq. �11� is used, calculating the responses of motions

should begin with the known points of motions. For this reason,
the starting point of the first time interval is usually selected at the
beginning of the rise. At this point, the initial displacements are

Yc0=0, Y0=0, the initial velocities Ẏc0=0, Ẏ0=0, so the initial

displacement deviation is U0=0 and its derivative U̇0=0. Substi-

tuting U0 and U̇0 into Eq. �11�, the displacement deviation U1 and

its derivative U̇1 at the ending of first time interval can be ob-

tained. Again, taking U1 and U̇1 as theinitial displacement devia-
tion and its derivative of the second time interval, and using the

same method, the displacement deviation U2 and its derivative U̇2
at the ending of second time interval can be obtained. Repeating
the above calculation process can obtain the displacement devia-
tions, U1 ,U2 ,U3 , . . . corresponding to each time interval, whereby
obtaining the output responses of the whole motion process 0
���1.

As to the residual vibration, when ��1, Ÿc���=0, Yc
˙ ���=0, so

that the right-hand side of Eq. �2� disappears. Therefore, from the
homogeneous solution of Eq. �2�, the amplitude of the residual
vibrations at any speed ratio � can be found as

A1 = �U�1�2 + ��U̇�1� + a1�U�1��/a2�2 �12�

3 Criterion for Residual Vibrations

3.1 Previous Work. To reduce residual vibrations over a
range of speeds, some optimality criteria have been proposed.
Wiederrich and Roth �4� suggested the control of acceleration;
Kwakernaak and Smit �3� suggested the control of acceleration as
well as the control of velocity, acceleration, and jerk; Kanzaki and
Itao �2� suggested the control of cam speeds of zero residual vi-
bration; Fabien, Longman and Freudenstein �5� suggested the con-
trol of jerk and follower spring force; while Chew and Chuang �6�
suggested to directly control the residual vibration. Apart from
Kanzaki and Itao as well as Chew and Chuang, the others sug-
gested operating velocity, acceleration, jerk, and spring force that
are indirectly effecting residual vibration, and the methods sug-

Fig. 1 Approximate substitution of motion curves with step curves „a… accel-
eration curve „b… velocity curve
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gested by whom are all indirect ones.
Since the method suggested by Kanzaki and Itao cannot make

residual vibrations over a range of speeds be minimized, now we
will make an analysis on the method suggested by Chew and
Chuang in the effectiveness of reducing residual vibrations, to
show why we will still propose a new way of restraining residual
vibrations.

In order to minimize the amplitude A1 of residual vibrations
over a speed range ��1 ,�2�, Chew and Chuang used the following
functional:

J =	
	1

	2

A1/	wd	 �13�

as the objective function, where 	=2��, 	1=2��1, 	2=2��2;
w is a weighting factor. The intention of introducing the weight is
to apply a more heavy penalty to the residual vibrations at the
higher cam speeds than that at the lower speeds over a range of
speeds. Chew and Chuang consider that the residual vibrations at
low speeds are generally low and great attention should be paid to
the high residual vibrations at the high speeds.

This criterion is very smart. But, since the residual vibrations at
each speed over the specified range of speeds are all penalized, the
effect of penalizing high residual vibrations is lowered. Therefore,
it is difficult that the cams with the least residual vibrations over a
specified range of speeds are obtained by this criterion.

In following sections, we will suggest a new objective function.
If the word “punishment” is still used to describe the feature of the
function vividly, this function can only punish the maximum re-
sidual vibration over a range of speeds. To advance this function,
a preparatory work yet remains to be done. We will start with it.

3.2 Control Variables. The concept of control variables is
introduced by using a polynomial displacement function. The
polynomial cam displacement of degree n and the cam velocity
and acceleration can be expressed as

Yc��� = 

i=0

n

Ci�
i �0 � � � 1� �14�

Ẏc��� = 

i=1

n

iCi�
i−1 �0 � � � 1� �15�

Ÿc��� = 

i=2

n

i�i − 1�Ci�
i−2 �0 � � � 1� �16�

For the minimal boundary conditions,

Yc�0� = 0 Yc�1� = 1 Ẏc�0� = 0 Ẏc�1� = 0 �17�

the polynomial coefficients or the relationship among coefficients
can be determined in terms of Eqs. �14� and �15� as the following:

C0 = 0 C1 = 0 C2 = 1 − 

i=3

n

Ci

Cn = − 1/�n − 2��2 + 

i=3

n−1

�i − 2�Ci� �18�

Known from Eq. �18�, among the n+1 coefficients of
C0 ,C1 , . . . ,Cn in addition to C0=C1=0, there are n−1 nonzero
coefficients of C2 ,C3 , . . . ,Cn. It can also be known from the latter
two items of Eq. �18� that among the nonzero coefficients, there
are only n−3 coefficients of C3 ,C4 , . . . ,Cn−1, being the indepen-
dent variables. When the degree n is specified, the cam displace-
ment and its derivatives are only decided by the n−3 coefficients.
Therefore, the n−3 coefficients are called the control variable.

If the functions of cam displacement and its derivatives are

controlled by n control variables xi , i=1,2 , . . . ,n, these functions
can be expressed as the function of a vector X of the control

variable, i.e., Yc�X� , Ẏc�X� , Ÿc�X� ,X= �x1 x2 ¯ xn�T. We will
also express other functions as the functions of vector X when
necessary.

3.3 Maximum Residual Vibration. It has been known that
the vibrational response is only governed by the cam velocity and
acceleration, if the parameters for mass, springs, and damper are
given. As to the cam velocity and acceleration, they are all the
functions of the control variable. It is known from Eq. �2� that the
vibration response is related to the speed ratio �. Accordingly, the
amplitude A1 of residual vibrations can be expressed as

A1 = g�Ẏc�X�,Ÿc�X�,�� �19�

When control variables X are given, the cam velocity and ac-
celeration are determined uniquely. At this time, it can always
calculate the amplitudes of residual vibrations for each given
value of the speed ratio � ���0� by the recursion formula �11�
and Eq. �12�. Hence, for an arbitrary specified speed range
��h ,�l�, the maximum amplitude of residual vibrations can not
only be solved but also be expressed by

fr�X� = max
�h����l

g�Ẏc�X�,Ÿc�X�,�� �20�

If it is the sole purpose to minimize residual vibrations over a
range of speeds, Eq. �20� as an objective function can obviously
be considered. However, we still hope that while the residual vi-
bration is reduced, other cam properties can also be controlled
simultaneously.

4 Optimization Models and Solution Methods

4.1 Minimization of Residual Vibration. Although several
methods for reducing residual vibrations over a range of speeds
have been proposed, the problem of controlling other cam prop-
erties cannot be well solved. Kwakernaak and Smit �3� only took
the control over the maximal cam velocity, acceleration and jerk
into account. As compared to Polydyne cam design, Fabien, Long-
man, and Freudenstein �5� improved the maximum contact stress,
contact force, and energy loss, while Kanzaki and Itao �2�, Wied-
errich and Roth �4�, and Chew and Chuang �6� did not take the
problem into account.

In order to achieve the purpose of controlling various cam prop-
erties, we take the control variables of the cam displacement and
its derivatives as the design variables, the function shown by Eq.
�20� as the objective function, and the requirements of design,
manufacturing, etc. for cams as the design constraints, that is, the
problem is expressed as

fr�X*� = min
X

fr�X� �21�

X is subject to the constraints

ui�X� = 0 i = 1,2, . . . ,p �22�

v j�X� � 0 j = 1,2, . . . ,q �23�

where X* represents the optimal solution of the constrained opti-
mization problem.

4.2 Restriction of Residual Vibration. In many cases, the
property desired to be as good as possible is not the residual
vibration but one of other cam properties. As to the residual vi-
bration, it is only required not to surpass a specified value. Equa-
tions �21�–�23� cannot solve this problem, and other literature did
not propose any method to solve this problem either.

For this problem, we still take the control variable X of the cam
displacement and its derivatives as the design variables. As to the
requirements of residual vibrations over a range of speeds no
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more than a specified value, we let Eq. �20� satisfy fr�X�� �RV�,
and let this equation be one of design constraints, i.e.,

min or max F�X�; X = �x1 x2 ¯ xn�T �24�

X is subject to the constraints

fr�X� − �RV� � 0 �25�

ui�X� = 0 i = 1,2, . . . ,p �26�

v j�X� � 0 j = 1,2, . . . ,q �27�

where �RV� is the allowable value of the residual vibration over a
specified range of speeds.

When the model is used to design cams, the designer should
select one from the concerned cam properties �excluding residual
vibration�, which is most expected to be as good as possible, to
formulate it as the objective function, while the rest of the cam
properties including residual vibration are formulated as the de-
sign constraints.

Minimization and Restriction of Primary Vibration. There is
no literature to raise a method to solve the problems of how to
minimize and restrict primary vibration over a range of speeds.
Since the aforesaid solutions to the residual vibration are also
suitable for the primary vibration, both the problems of control-
ling primary vibration are also solved incidentally and even the
procedure is very similar, i.e., first set up a equation corresponding
to Eq. �20� for primary vibrations, and then, set up two con-
strained optimization models corresponding to Eqs. �21�–�23� and
�24�–�27� with the equation. The above-mentioned process will
not be described in detail because of the limit of the paper.

4.3 Methods of Solving Models. Since this research is to
provide a universal method for dynamic cam design, a numerical
method has been used to solve the vibrational response equation,
thus making the solution become a recursion formula; again, since
the problems of controlling vibrations over a range of speeds are
formulated as constrained optimization problems, a direct search
method of constrained optimization problems need to be adopted
to seek for the solutions. The complex method is adopted in this
research. The process of searching optimal solution with this
method has been detailed in literature �9�. Because of this, we can
no longer describe the solution process. When the models degen-
erate into an unconstrained optimization problem, the Simplex
method �10� can be adopted.

5 Hermite Cam Displacement

5.1 Choice of Curve. Many curves have been used for repre-
senting the motion curve of cams and there is a more systematic
introduction found in �8�. As viewed from the literature on the
optimization of dynamic cam design, however, there are a few
curves found in use. One reason is that some methods are only
suitable for the case of simple curves such as polynomial to rep-
resent the motion curves of cams. Another reason is that the pa-
rameters of some curves cannot be determined automatically by
optimization program via calculation, and must be specified by the
designer in term of his experience. For instance, it can be seen
from the literature �7� that the number of control points and the
abscissas of all inner knot points of B-spline need to be deter-
mined by the designer.

Several dynamic cam design technologies of cams have been
introduced previously, which are not subject to the restriction of
the complexity of cam displacement functions, whereby creating
the prerequisite conditions for adopting various curves to express
the cam displacement. Hermite curves have two advantages of
flexibility as B-spline and convenience of doing without determin-
ing parameters artificially. In the following sections, we will use it
to set up a universal cam displacement for the models shown by
Eqs. �21�–�23� and �24�–�27�.

5.2 Hermite Representation of Cam Displacement. One
parametric Hermite curve segment of degree 2k+1 is determined
by position vectors Q0 ,Q1, which decide the end points of the

curve, and the derivative vectors Q0
˙ ,Q1

˙ ,Q0
¨ ,Q1

¨ , . . . ,Q0
�k� ,Q1

�k�,
which decide on the curve shapes. Once the position vectors are
fixed, the derivative vectors are the parameters controlling the
curve shapes. The value k decides on the flexibility of the curve so
that, a larger k has better flexibility of the curve, and at the same
time the parameters controlling the curve shapes are larger.

Generally the cam displacement consists of the rise, fall, and
dwell. Since it is the most convenient that the dwell is represented
by a straight-line segment, Hermite representation of the cam dis-
placement is only the rise and fall represented by the curves. In
following sections, we will use a 7th-degree �k=3� Hermite curve
segment to represent the rise or fall of the cam displacement,
considering the flexibility of the curve and the convenience of
operating.

5.3 Motion Equations. One 7th-degree Hermite curve can be
expressed as

P�u� = HQ �0 � u � 1� �28�

where

H = �H0,0 H0,1 H1,0 H1,1 H2,0 H2,1 H3,0 H3,1�

Q = �Q0 Q1 Q0
˙ Q1

˙ Q0
¨ Q1

¨ Q�0 Q�1�T

H0,0 = 20u7 − 70u6 + 84u5 − 35u4 + 1

H0,1 = − 20u7 + 70u6 − 84u5 + 35u4

H1,0 = 10u7 − 36u6 + 45u5 − 20u4 + u

H1,1 = 10u7 − 34u6 + 39u5 − 15u4

H2,0 = 2u7 − 15u6/2 + 10u5 − 5u4 + u/2

H2,1 = − 2u7 + 13u6/2 − 7u5 − 5u4/2

H3,0 = u7/6 − 2u6/3 + u5 − 2u4/3 + u3/6

H3,1 = u7/6 − u6/2 + u5/2 − u4/6

If Q0= �s0 ,
0�, Q1= �s1 ,
1�, Q0
˙ = �s2 ,
2�, Q1

˙ = �s3 ,
3�, Q0
¨

= �s4 ,
4�, Q1
¨ = �s5 ,
5�, Q�0= �s6 ,
6�, Q�1= �s7 ,
7�, the parametric

equation of the cam displacement can then be expressed as

 S�u� = HQs


�u� = HQ


�29�

where

Qs = �s0 s1 s2 s3 s4 s5 s6 s7 �T

Q
 = �
0 
1 
2 
3 
4 
5 
6 
7 �T

Differentiate S�u� with respect to 
�u� to get the cam velocity,
acceleration, and jerk functions. The results are

 dS/d
 = Ṡ/
̇


 = HQ


�30�

 d2S/d
2 = �
̇S̈ − Ṡ
̈�/
̇3


 = HQ


�31�

 d3S/d
3 = �
̇�
̇S� − Ṡ
�� − 3
̈�
̇S̈ − Ṡ
̈��/
̇5


 = HQ


�32�

where
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Ṡ = ḢQs S̈ = ḦQs S� = H�Qs 
̇ = ḢQ
 
̈ = ḦQ
 
� = H�Q


Ḣ = �Ḣ0,0 Ḣ0,1 Ḣ1,0 Ḣ1,1 Ḣ2,0 Ḣ2,1 Ḣ3,0 Ḣ3,1�

Ḧ = �Ḧ0,0 Ḧ0,1 Ḧ1,0 Ḧ1,1 Ḧ2,0 Ḧ2,1 Ḧ3,0 Ḧ3,1�

H� = �H�0,0 H�0,1 H�1,0 H�1,1 H�2,0 H�2,1 H�3,0 H�3,1�

When Q0 and Q1 express the starting and ending points of the rise,
Eqs. �29�–�32� are the equations of motion of the rise. When Q0
and Q1 express the starting and ending points of the fall, Eqs.
�29�–�32� are the equations of motion of the fall. In other words,
all the equations are universal to the rise and the fall. Only when
the 16 unknowns s0 ,s1 , . . . ,s7 and 
0 ,
2 , . . . ,
7 are given, can
Eqs. �29� to �32� be decided. Since we have used one Hermite
curve segment to represent the rise and the fall, respectively, 32
unknowns should be decided. For a concrete design problem, the
rise angle, fall angle and lift are always known, i.e., the position
vectors at the endpoints are always known, whereby there are only
24 unknowns unspecified.

5.4 Continuity Conditions and Control Variables. To de-
sign cams with better properties, it is necessary to let Eq. �29�
satisfy some boundary conditions. A 7th-degree Hermite cam dis-
placement can achieve the continuity of velocity, acceleration, and
jerk at the boundary of the rise or fall. Therefore, this section will
discuss the conditions corresponding to the continuity of three
kinds. Owing to the deduction process of the conditions of the rise
and fall being similar, we will only deduce the conditions of the
rise here.

At the start of the rise, u=0, and then substitute it into Eqs.
�29�–�32�, thus obtaining

S�0� = s0 �33�


�0� = 
0 �34�

dS�0�/d
�0� = s2/
2 �35�

d2S�0�/d
2�0� = �
2s4 − s2
4�/
2
3 �36�

d3S�0�/d
3�0� = �
2�
2s6 − 
6s2� − 3
1�
2s4 − 
4s2��/
2
5

�37�
Let Eqs. �33�–�37� equal to zero respectively, whereby obtaining

s0 = 0 
0 = 0 s2 = 0 
2 � 0 
2s6 − 
6s2 = 0 
2s4 − s2
4 = 0

�38�
From Eq. �38�, the continuity conditions of jerk at the beginning
of the rise can be obtained,

s0 = 
0 = s2 = s4 = s6 = 0 
2 � 0 �39�
If the acceleration continuity at the beginning of the rise is

expected, there is d3S�0� /d
3�0��0, from which we can obtain
s6�0, whereby the continuity conditions of acceleration at the
beginning of the rise is

s0 = 
0 = s2 = s4 = 0 
2 � 0 s6 � 0 �40�
If at the beginning of the rise the velocity continuity is ex-

pected, there are d3S�0� /d
3�0��0 and d2S�0� /d
2�0��0, from
which we can obtain s4�0 and s6�0, whereby the continuity
conditions of velocity at the beginning of the rise is

s0 = 
0 = s2 = 0 
2 � 0 s4 � 0 s6 � 0 �41�
As for the continuity conditions at the end of the rise, attention

is paid to u=1 and to the coordinate of the rise ending point �h ,��
�� is the rise angle�, so that it is easy to obtain the continuity
conditions of jerk, acceleration, and velocity in the following:

s1 = h s3 = s5 = s7 = 0 
1 = � 
3 � 0 �42�

s1 = h s3 = s5 = 0 
1 = � 
3 � 0 s7 � 0 �43�

s1 = h s3 = 0 
1 = � 
3 � 0 s5 � 0 s7 � 0 �44�
It can be seen from the comparison of Eq. �39�–�44� that the

differences of three continuity conditions lie in whether s4, s6, s5,
and s7 equal zero or not. We suggest that the velocity continuity
conditions be used in the case of having no special causes, that is,
take s4 ,s5 ,s6 ,s7 as the design variables, and let the optimization
program decide whether they need zero or not. When the velocity
continuity conditions are used, it is known from Eqs. �41� and

�44� that the ordinate values of derivative vectors Q0
˙ and Q1

˙ must
be specified as zero, i.e., s2=0 and s3=0, so that there are 10
unknowns of the displacement function of the rise part, and then it
can be inferred that the number of the unknowns of the fall part
are also 10. Therefore, the total of the unknowns is 20. They are

2 ,
3 , . . . ,
7 and s4 ,s5 ,s6 ,s7. These 20 unknowns are just the
control variables of the 7th-degree Hermite cam displacement.

6 Examples
Now we present two examples to show the effect of new meth-

ods in reducing residual vibrations and the capacity of satisfying
various design requirements, as well as the effectiveness of com-
plicated cam displacement functions. The first one compares the
results produced by the methods suggested in this paper and lit-
erature �6�. The second one simulates a cam design with many
design requirements to be satisfied.

6.1 Comparing Results Produced by the Existing Method.
In order to make the results produced by the method suggested in
this paper be comparable to the results produced by the method
advanced by literature �6�, we have adopted the following mea-
sures: to begin with, since Chew and Chuang did not take into
account the problem of controlling other cam properties so that we
have to adopt the degraded form of the model shown by Eqs.
�21�–�23�, i.e., to eliminate the design constraints �22� and �23�;
secondly, Chew and Chuang did not take into account the viscous
damping of the system. Therefore, we specify parameter �=0;
finally, in corresponding to Chew and Chuang’ doings, we also
adopt the polynomial cam displacement, i.e., using Eq. �14� and
specifying degree n=9 and boundary condition �17�.

First, we see a case of minimizing residual vibrations over a
narrower speed range 1���2. Over this range of speeds, two
optimized cam displacement functions are obtained by the meth-
ods suggested in this paper and the literature �6�. Their coeffi-
cients are listed in Table 1 �see Nos. 1 and 2�. It can be seen from
Table 1 that the different coefficients are obtained due to a differ-
ent objective function for the same displacement functions and the
same range of speeds. Figure 2�a� illustrates the differences in the
residual vibration spectrum for the two different sets of coeffi-
cients. This figure indicates that the maximum residual vibration
of the displacement function �6� is located at �=2 of the low
speed end. In comparison, the residual vibration of new displace-
ment function over that range of speeds is reduced by about 40%.

Table 1 Cam profile coefficients

No. Speed range Coefficients in ascending order

1 1���2 0.0, 0.0, 157.14, −2404.18, 14722.08, −46518.73,
82826.13, −83945.26, 45210.74, −10046.92a

2 1���2 0.0, 0.0, 155.94, −2375.63, 14518.55, −45838.44,
81599.52, −82715.88, 44565.36, −9908.42

3 1.0499���1.9436 0.0, 0.0, 155.95, −2384.63, 14601.14, −46138.82,
82157.45, −83276.62, 44855.61, −9969.08

4 1���10 0.0, 0.0, 10.77, −58.17, 169.99, −286.35, 309.91,
−242.42, 133.19, −35.92.

aReference �6�.

Journal of Applied Mechanics NOVEMBER 2007, Vol. 74 / 1161

Downloaded 04 May 2010 to 171.66.16.42. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



It still indicates that the objective function �13� cannot restrain the
residual vibrations well enough at both the high and the low speed
end.

Of course, we have noted that the cam displacement function
�6� has lower residual vibrations over a smaller range of speeds.
For this matter, we respecify a smaller speed range 1.0499��
�1.9436 and over this speed range we obtain a new optimized
cam displacement function. Its coefficients are listed in Table 1
�see No. 3�. Figure 2�b� indicates that the residual vibration of the
new optimized function over this smaller range of speeds is still
reduced by about 6.6%.

Now, we see a case of a wider speed range 1���10. Over this
range of speeds, an optimized cam displacement function is ob-
tained by the method suggested in this paper. Its coefficients are
also listed in Table 1 �see No. 4�. Figure 2�c� shows the residual
vibration of this optimized function. Although Figs. 3�b�, 4�b�,
and 6�b� in the literature �6� show the spectra of several optimized
functions over this range of speeds, the coefficients of these opti-
mized functions were not given. For this reason, we can only
make a visual comparison. After the comparison, it can be known
that the maximum residual vibration of this new optimized func-
tion over the range of speeds is about 0.13, obviously being
smaller than the residual vibration of all above-mentioned opti-
mized functions in the literature �6� at �=1 of the high speed end.

We have known via the above comparison that the optimal
criteria of both the methods are the residual vibration, but the
ways of operating the residual vibration are different, leading to
the different results. As viewed from the effects, operating the
maximum residual vibration over a range of speed is the better
way obviously.

In addition, it can be known from the above examples that
when the speed range is changed from 1���2 into 1.0499��
�1.9436, the speed range is only reduced by 10.63%, but the

residual vibration is reduced about 30%. This case just illustrates
that serious attention should be paid to the speed range in cam
design.

6.2 Cam Design for Intake Valve-Gear. The design param-
eters for a disk cam with a translating roller follower in the intake
valve-gear of an internal combustion engine are shown in Table 2.
The design indexes of the primary vibration, residual vibration,
pressure angle, etc. are listed in Table 3.

Since the design includes the requirements of restricting re-
sidual vibrations and primary vibrations, any existing methods
cannot be used to design this cam. However, the model shown by
Eqs. �24�–�27� is just applicable to this case. According to the
design requirements, this design problem can be stated as follows:

min f�X� = −	
0

�1+�2

�follower displacement�d
 �45�

subject to

fr�X� − �RV� � 0 �46�

fp�X� − �PV� � 0 �47�

�max�X� − ��� � 0 �48�

�max� �X� − ���� � 0 �49�

NRmax�X� + �NR� � 0 �50�

− Fmin�X� � 0 �51�

Fig. 2 Comparison of residual vibration characteristics „a… �=1–2; „b… �=1.0499–1.9436; and „c… �=1–10

Fig. 3 Follower displacement curve

Fig. 4 Follower velocity curve

Table 2 Design parameters

Prime circle radius 22 mm
Roller radius 10 mm
Rocker arm ratio 1.0
Preload force of valve spring 330 N
Equivalent spring constant of valve spring 60 N/mm
Equivalent spring constant of follower 3500 N/mm
Equivalent mass of follower at output 0.17 kg
Speed range of cam rotation 1600–2400 rpm
Contact width between cam and roller 10 mm
Follower offset 0.0
Rise of cam 6 mm
Rise angle and return angle 65 deg
Elastic modulus 200103 N/mm2

Poisons ratio 0.298

Table 3 Permissible values

�PV� �RV� ��� ���� �NR� ��H�

0.2 mm 0.06 mm 35 deg 70 deg −250 mm 800 N/mm2
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�Hmax�X� − ��H� � 0 �52�

where �1 and �2 are the rise and fall angles, respectively, 
 is the
camshaft angle, fr and fp are the maximum residual vibration and
maximum primary vibration over the specified speed range, re-
spectively, �max and �max� are the maximum pressure angles of the
rise and fall of the cam profile, respectively, NRmax is the maxi-
mum negative radius of the curvature of the cam profile, Fmin and
�Hmax are the minimum contact force and maximum contact stress
between the follower and cam at the maximum cam speed,
respectively.

In this model, the objective function �45� is the integral of the
displacement, which is to make the flow area become maximiza-
tion. Equations �46� and �47� are to make the motion of the valve
head smooth. Equation �48� is to ensure the cam to have a better
driving efficiency. Equation �49� is to avoid self-lock of the cam
mechanism. Equation �50� is to make the cam be ground by a
grinding wheel with a radius no bigger than ��NR��. Equation �51�
is to make the follower not be separated from the cam. Equation
�52� restricts the maximum contact stress between the cam and
follower. Except Eqs. �46� and �47�, other equations in this model
can be found in the literature �7�.

The cam displacement specified for this design is the 7th-
degree Hermite function with the rise and fall represented by one
Hermite curve segment, respectively. Also, the velocity continuity
is specified for the starting point of the rise, the ending point of
the fall and the connection point of the rise and fall.

Design results are presented in Table 4 and in Figs. 3–11. Table
4 shows the optimal solution. Figures 3–11 show the cam dis-
placement, velocity, acceleration, primary vibration, residual vi-
bration, pressure angle, radius of curvature, contact force, and

contact stress.
The following observations can be made from the design re-

sults. To begin with, it can be seen from Figs. 6–11 that the cam
designed satisfies all the design requirements, and also from Figs.
6–11 that among Eqs. �46�–�52�, only Eqs. �46� and �51� in this
design are playing a real constraint or known as the tight
constraints.

It can be seen from Table 4 that the values of s4 and s5 of the
rise and fall do not equal zero, indicating that there exists the
finite accelerations at the start of the rise, the end of the fall and
the interboundary of the rise and fall, for the values of s4 and s5
are so small that we cannot see the existence of accelerations at

Table 4 Optimal solution „�i „i=1–7… , deg; si, „i=4–7… , mm…

Variables Rise Return


2
46.494 84.876


3
78.160 72.199


4 −258.626 −346.684

5

286.366 427.331

6

8805.370 4546.238

7

4392.870 8199.268
s4

0.418 −0.766
s5 −0.465 0.004
s6

2.016 −30.973
s7

27.381 −3.998

Fig. 5 Follower acceleration curve

Fig. 6 Primary vibration characteristics

Fig. 7 Residual vibration characteristics

Fig. 8 Pressure angle of cam profile

Fig. 9 Radius of curvature of cam profile

Fig. 10 Cam-follower contact force

Fig. 11 Cam-follower contact stress
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the three places in Fig. 5.
Figure 7 shows that the heights of three waviness within the

specified range of speeds are equal to or nearly equal to the al-
lowed values of the residual vibration, which illustrates that the
residual vibration is restricted below the specified values
effectively.

Figure 10 shows that the minimum contact force between the
follower and cam is always larger than or equal to zero, whereby
indicating the follower cannot separate from the cam. The fol-
lower and cam is in the critical state of contact at the camshaft
angles of 45 deg and 85 deg.

Finally, it can be seen from Fig. 11 that the maximum contact
stresses between the follower and cam, which are nearly equal,
appear at the camshaft angle of 53 deg on the rise, and 77 deg on
the fall. This means that the deactivation of the profile surface will
appear earliest at these two places.

This example shows that the two functions of restricting re-
sidual and primary vibrations can be combined with the functions
of restricting other cam properties; the technologies of controlling
vibrations suggested in this paper are effective for complicated
cam displacement functions; Hermite cam displacement adopted
to the design cam is also convenient.

7 Conclusions
This investigation has presented a method for minimizing or

restricting residual and primary vibrations over a range of speeds,
respectively, and has shown that operating the maximum residual
vibration over a range of speeds is more effective for reducing
residual vibrations. All the methods can control various quantifi-
able cam properties, and can be combined into one optimization
model to meet such different needs as both minimizing residual
vibrations and restricting primary vibrations, both restricting re-

sidual vibrations and restricting primary vibrations, etc. With such
features and the universal Hermite cam displacement, this inves-
tigation has developed an environment for the design of high-
speed cams. In this environment, not only can any one of quanti-
fiable cam properties be formulated as an objective function and
others be formulated as design constraints, but also the designer
does need not to make great efforts on choosing motion curves,
and the design result can be generated computationally and opti-
mally by the cam optimization program.
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In this study, we derive an analytical solution describing the magnetohydrodynamic
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1 Introduction
Because of their use in different technological processes, flows

of non-Newtonian fluids have attracted considerable attention
from the researchers. Due to the complexity of fluids, several
models of non-Newtonian fluids have been proposed. The depar-
ture of viscoelastic behavior of non-Newtonian fluids from the
Navier–Stokes equations manifests itself in a variety of ways:
non-Newtonian viscosity �shear thinning or shear thickening�,
stress relaxation, nonlinear creeping, development of normal
stress differences, and yield stress. Although the governing equa-
tions for viscoelastic fluids are in general much more complicated,
nonlinear, and higher order than the Navier–Stokes equations,
even then several investigators �1–10� have recently engaged in
studying the flows of such fluids.

Boundary layer theory has been successfully applied to non-
Newtonian fluids of various models. It is well known that bound-
ary layer on continuous surface is an important type of flow oc-
curring in a number of technical problems. Examples may be
found in continuous casting, glass fiber production, metal extru-
sion, hot rolling, textiles, and wire drawing. This type of flow has
been considered first by Sakiadis �11,12�. Following his works an
increasing number of papers analyzing various aspects have been
published. Some recent attempts on boundary layer flows of New-
tonian and non-Newtonian fluids past a stretching surface have
been made by several investigators �see Refs. �13–22� and refer-
ences therein�. But literature on the shrinking flow problem is
very scarce. According to our information, only two such attempts
have been made by Wang �23� and Miklavcic and Wang �24�. In
Ref. �23�, he studied unsteady shrinking film solution, whereas in
Ref. �24�, they proved the existence and uniqueness for steady
viscous flow caused by a shrinking sheet for a specific value of the
suction parameter.

So far no attempt has been made to study the boundary flow of
a non-Newtonian fluid over a shrinking sheet. Therefore, the focus
of the present endeavor is threefold. First we consider the second
grade fluid �a simplest subclass of viscoelastic fluid�. Second, the
magnetohydrodynamic �MHD� influence on the shrinking flow is
determined. Third, analytic solution by the homotopy analysis
method �HAM� �25,26� is given. HAM has already been used
successfully for several nonlinear problems �27–42�.

The presentation proceeds as follows. In Sec. 2 the boundary
layer problem for MHD shrinking flow is formulated. Analytic
solutions are provided in Sec. 3. In Sec. 4, the convergence of the
HAM solution is presented. This section also includes the com-
parison between exact and HAM solutions. Section 5 consists of
results and discussion. The concluding remarks are given in Sec.
6.

2 Mathematical Formulation
Let us consider an incompressible second grade fluid past a

horizontal shrinking sheet at y=0. The x and y axes are taken
along and perpendicular to the sheet, respectively, as shown in
Fig. 1. The flow is confined to y�0. A constant magnetic field of
strength B0 acts in the direction of the y axis. The induced mag-
netic field is negligible, which is a valid assumption on a labora-
tory scale. This assumption is justified when the magnetic Rey-
nolds number is small �43–49�. Since no external electric field is
applied and the effect of polarization of the ionized fluid is neg-
ligible, we can assume that the electric field E=0. The boundary
layer equations governing the MHD flow are

�u

�x
+

�v
�y

= 0 �1�

u
�u

�x
+ v

�u

�y
= �

�2u

�y2 +
�1

�
�u

�3u

�x � y2 +
�u

�x

�2u

�y2 +
�u

�y

�2v
�y2 + v

�3u

�y3�
−

�B0
2

�
u �2�

where � is the kinematic viscosity; � is the electrical conductivity;
� is the fluid density; �1 is the second grade/viscoelastic param-
eter; and u and v are x and y components of velocity.

The boundary conditions of the system are

u = − ax, v = − V at y = 0 �3�

u → 0,
�u

�y
→ 0 as y → � �4�

where a�0 is the shrinking constant; and V ��0� is the suction
velocity. In order to solve the problem completely in unbounded
domains, it is possible to augment the boundary conditions by
assuming certain asymptotic structures for the solutions at infinity.
Here, the second condition in Eq. �4� is the augmented condition
discussed by Grag and Rajagopal �50�. Later Vajravelu and Roper
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�51�, Cortell �15�, and others have used this condition for flow
problems over a stretching sheet.

The formulation of the boundary value problem is now com-
pleted. In order to solve this problem, it is convenient to nondi-
mensionalize the governing equations and conditions. This can be
accomplished by using the following transformations

u = axf����, v = − �a�f���, � =�a

�
y �5�

The Eq. �1� is now identically satisfied and after performing the
mathematical operations, the resulting dimensionless problem can
be written as

f� − M2f� − f�2 + f f� + K�2f�f� − f�2 − f f iv� = 0 �6�

f = S, f� = − 1 at � = 0

f� → 0, f� → 0 as � → � �7�

where S=V /�a�, M2=�B0
2 /�a, and K=a�1 /���0 and a prime

indicates differentiation with respect to �.
The exact solution of Eqs. �6� and �7� is of the form

f��� = S −
1

�
�1 − e−��� �8�

Substituting Eq. �8� into Eq. �6� we get the following cubic equa-
tion in � as

�3KS − �K − 1��2 − S� − M2 + 1 = 0 �9�

which has one real and two complex roots. The real root is given
by

� =
1

6KS
�2�K − 1� + 24/3��1 − K�2 + 3KS2�

A
+ 22/3A�

in which

A = � − 2�1 − K�3 − 9�1 − K�KS2 − 27K2�1 − M2�S2

+ �− 4��1 − K�2 + 3KS2�3 + �2�1 − K�3 + 9�1 − K�KS2 + 27K2�1 − M2�S2�2 	1/3

and the solution Eq. �8� is valid for all nonzero values of K. We
have just shown the values of f in Table 3 for K up to 20 in order
to compare it with HAM. However, we can select K�20. Also,
the existing solution Eq. �8� is unique.

The shear stress 	̃w at the surface is defined as

	̃w
y=0 = 
�

�u

�y
+ �1�u

�2u

�x � y
+ v

�2u

�y2 + 2
�u

�x

�u

�y
�	


y=0

�10�

The above equation in dimensionless form becomes

	w =
	̃w

a3/2x�
�
= �f� + K�3f�f� − f f�����=0 �11�

The problem consisting of Eqs. �6� and �7� can also be solved
analytically by using HAM in the next section.

3 Analytic Solution by HAM
For the HAM solution, the initial approximation f0 of f and the

auxiliary linear operator L can be written as

f0��� = S − 1 + e−� �12�

L�f� = f� − f� �13�

where

L�C1� + C2e� + C3e−�� = 0 �14�

and Ci �i=1–3� are arbitrary constants. Let � be an auxiliary
nonzero parameter and p� �0,1� is the embedding parameter then
we get the following problems:

zeroth-order deformation problem

�1 − p�L� f̂��,p� − f0���� = p�N� f̂��,p�� �15�

f̂�0,p� = S, f̂��0,p� = − 1, f̂��� ,p� = 0 �16�

N� f̂��,p�� =
�3 f̂��,p�

��3 − M2� f̂��,p�
��

− � � f̂��,p�
��

�2

+ f̂��,p�
�2 f̂��,p�

��2 + ��2
� f̂��;p�

��

�3 f̂��;p�
��3

− � �2 f̂��;p�
��2 �2

− f̂��;p�
�4 f̂��;p�

��4  �17�

mth-order deformation problem

L�fm��� − �mfm−1���� = �Rm��� �18�

fm�0� = fm� �0� = fm� ��� = 0 �19�

Rm��� = fm−1� ��� − M2fm−1� ���

+ �
k=0

m−1 � fm−1−kfk� − fm−1−k� fk�

+ ��2fm−1−k� fk� − fm−1−k� fk� − fm−1−kfk
iv�
	 �20�

Fig. 1 Flow model for the problem
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�m = �0, m  1

1, m � 1
�21�

The mth-order deformation problem up to first few order of ap-
proximations can be solved through symbolic software MATH-
EMATICA. The solution can be written as

fm��� = �
n=0

m+1

�
q=0

m+1−n

am,n
q �qe−n�, m � 0 �22�

where

am,0
0 = �m�m+2am−1,0

0 − �
q=0

m

�m,1
q 
1,1

q

− �
n=2

m+1 � �n − 1��m,n
0 
n,0

0

+ �
q=1

m+1−n

�m,n
q ��n − 1�
n,0

q − 
n,1
q � � �23�

am,0
k = �m�m+1−kam−1,0

k , 1  k  m + 1 �24�

am,1
0 = �m�m+1am−1,1

0 + �
q=0

m

�m,1
q 
1,1

q + �
n=2

m+1�n�m,n
0 
n,0

0

+ �
q=1

m+1−n

�m,n
q �n
n,0

q − 
n,1
q � �25�

am,1
k = �m�m−k+1am−1,1

k + �
q=k−1

m

�m,1
q 
1,k

q , 1  k  m + 1

�26�

am,n
k = �m�m+2−n−kam−1,n

k + �
q=k

m+1−n

�m,n
q 
n,k

q , 2  n  m + 1,

0  k  m + 1 − n �27�


1,k
q = �

p=0

q+1−k
q!

k ! 2q+1−k−p , q � 0, 1  k  q + 1 �28�


n,k
q = �

r=0

q−k

�
p=0

q−k−r
q!

k ! �n − 1�q+1−k−r−pnr+1�n + 1�p+1 ,

0  k  q + 1 − n, q � 0, n � 2 �29�

�m,n
q = ���m+2−n−qdm−1,n

q − M2bm−1,n
q + �m,n

q − �m,n
q

+ K�2�m,n
q − �m,n

q − �m,n
q �

	 �30�

�m,n
q = �

k=0

m−1

�
i=max�0,n−m+k�

min�n,k+1�

�
j=max�0,q−m+k+n−i�

min�q,k+1−i�

ck,i
j am−1−k,n−i

q−j

�m,n
q = �

k=0

m−1

�
i=max�0,n−m+k�

min�n,k+1�

�
j=max�0,q−m+k+n−i�

min�q,k+1−i�

bk,i
j bm−1−k,n−i

q−j

�m,n
q = �

k=0

m−1

�
i=max�0,n−m+k�

min�n,k+1�

�
j=max�0,q−m+k+n−i�

min�q,k+1−i�

dk,i
j bm−1−k,n−i

q−j

�m,n
q = �

k=0

m−1

�
i=max�0,n−m+k�

min�n,k+1�

�
j=max�0,q−m+k+n−i�

min�q,k+1−i�

ck,i
j cm−1−k,n−i

q−j

�m,n
q = �

k=0

m−1

�
i=max�0,n−m+k�

min�n,k+1�

�
j=max�0,q−m+k+n−i�

min�q,k+1−i�

ek,i
j am−1−k,n−i

q−j

bm,n
k = �k + 1�am,n

k+1 − nam,n
k , cm,n

k = �k + 1�bm,n
k+1 − nbm,n

k

dm,n
k = �k + 1�cm,n

k+1 − ncm,n
k , em,n

k = �k + 1�dm,n
k+1 − ndm,n

k �31�

a0,0
0 = s − 1, a0,1

0 = 1 �32�
For the detailed procedure of deriving the above relations the
reader is referred to Ref. �37�. Therefore, the totally explicitly
analytical solution is

f��� = �
m=0

�

fm��� = lim
M→�

��
m=0

M

am,0
0 + �

n=1

M+1

e−n�� �
m=n−1

M

�
k=0

m+1−n

am,n
k �k�	

�33�

4 Convergence of the Analytic Solution
The explicit, analytic expression given by Eq. �33� contains the

auxiliary parameter �, which gives the convergence region and
rate of approximation for the homotopy analysis method. The aux-
iliary parameter � depends upon the physical parameters of the
flow problem. In Fig. 2 the � curves are plotted for different

Fig. 2 � curves for 30th order of approximation
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values of M, S, and K at the 30th order of approximation. Figure
2�a� gives the admissible range of � for different values of M �
=1.2,1.5,1.8� keeping S and K fixed. The variations of S and K
for the range of � can be seen in Figs. 2�b� and 2�c�, respectively.
Figure 2 indicates the range for the admissible values of the pa-
rameter � which is −1.8��−0.1. The series Eq. �33� converges
in the whole region of � when �=−0.8. It is further noted from
Fig. 2 that the interval for admissible values of � increases by
increasing order of approximation. Figure 3 gives a comparison
between the HAM solution Eq. �33� and the exact solution given
in Eq. �8�. Table 1 is displayed to show the convergence of the
HAM solution with increasing order of approximation. Table 2
gives a comparison between the HAM solution and shows a good
agreement with the exact solution.

5 Results and Discussion
The main results of interest here are the influence of suction

velocity S, the Hartman number M, and the viscoelastic parameter
K on the velocity profiles f and f�. In order to analyze these
important characteristics of the problem, we plot Figs. 4–9. The
variation of velocity and the shear stress at the wall is also tabu-
lated in Tables 3 and 4, respectively.

Figures 4 and 5 represent the variations of f and f� for various
values of suction parameter S. It is noted from these figures that
the magnitude of both f and f� decreases when the suction param-
eter S increases and this decrement is larger in the case of f .
Moreover, the thickness of the boundary layer decreases with the
increase in S. This is in keeping with the fact that suction causes
reduction in the boundary layer thickness.

In order to illustrate the influence of Hartman number M on f
and f�, we prepared Figs. 6 and 7, respectively. As expected,
increasing the magnitude of M reduces f and f�. This is due to the
effect of magnetic force against the flow direction. It can be seen
that with the increase of M, the magnitude of f increases more
rapidly when compared with f�. Figures 6 and 7 further depict that
there is a decrease in the thickness of the boundary layer due to an
increase in M.

The flow dependence of a second grade fluid on the material
parameter K can be clearly observed from Figs. 8 and 9. From
these figures it can be determined that increasing K decreases f
and f�. These figures also indicate that large values of K cause f
and f� to become flatter. It may also be noted from Fig. 9 that the
boundary layer thickness decreases when K increases. Also, the
magnitude of f is larger than f� when K increases.

Table 1 shows f��0�. It is interesting to note here that the values
of f��0� correspond to the exact solution at the 15th order of
approximation. Table 2 provides a comparison of f for HAM and
exact solutions for various values of � while keeping other pa-
rameters fixed. An excellent agreement is observed here.

Tables 3 and 4 have been made just to see the influence of K,
M, and S on f and the shear stress at the wall �	w�, respectively.
Table 3 shows the variations of K, M, and S on f for both HAM
and exact solutions given by Eqs. �33� and �8�, respectively. It is
found that f decreases as the viscoelastic parameter K increases,
and increases for large values of M and S. Table 4 elucidates the
variation of K, M, and S on the shear stress at the wall 	w. It is
observed that the magnitude of the shear stress first decreases and
after K=0.5, it increases for large values of K�10�. The shear
stress 	w increases when both M and S increases. It is further
noted that the agreement between HAM and exact solution is
quite good.

6 Concluding Remarks
In this paper, the MHD second grade fluid flow due to a shrink-

ing sheet is considered. The series solution is obtained and the
convergence is shown. The effects of the sundry parameters are
discussed through graphs. A comparison between HAM and exact
solutions is given. This kind of analytic solution for MHD flow of
a second grade fluid over a shrinking sheet is presented for the
first time in the literature. The following observations have been
made:

• The magnitude of f and f� is decreased by increasing S, M,
and K, respectively;

• The boundary layer thickness is decreased as S, M, and K
increases;

• The magnitude of f is larger when compared with f�;
• The HAM results for MHD viscous fluid can be obtained by

setting K=0;
• The HAM results are identical to the exact solution �Tables

1 and 2�.
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Fig. 3 Comparison of HAM and exact solutions

Table 1 Values of f�„0… for HAM and exact solutions when S=1, M=1.5, K=0.2, and �=−0.8

Order of approximation 1 5 10 15 20 25 Exact solution

f��0� 1.5 1.5879 1.59416 1.59443 1.59443 1.59443 1.59443

Table 2 Comparison of HAM and exact solutions for f when
S=1, M=1, K=0.3, and �=−0.8

� HAM solution, Eq. �33� Exact solution, Eq. �8�

0.0 1.0 1.0
0.2 0.818731 0.818731
0.5 0.606531 0.606531
1.0 0.367879 0.367879
2.0 0.135335 0.135335
3.0 0.0497871 0.0497871
5.0 0.00673795 0.00673795
10.0 0.0000453999 0.0000453999
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Nomenclature
u, v � velocities in x, y direction
x, y � spatial coordinates

V � suction velocity
a � the shrinking constant

B0 � applied magnetic field
p � embedding parameter
L � auxiliary linear operator
N � nonlinear operator

� � nonzero auxiliary parameter
f � real function

� � similarity variable

 � dynamic viscosity
� � kinematic viscosity
� � density

�1 � material moduli
� � electrical conductivity

Fig. 4 Effects of suction S on f at �=−0.8

Fig. 5 Effects of suction S on f� at �=−0.8

Fig. 6 Effects of Hartman number M on f at �=−0.8

Fig. 7 Effects of Hartman number M on f� at �=−0.8

Fig. 8 Effects of second grade parameter K on f at �=−0.8

Fig. 9 Effects of second grade parameter K on f� at �=−0.8
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S � dimensionless suction velocity, S=V /�a�
M2 � the Hartman number, M2=�B0

2 /�a
K � dimensionless viscoelastic or second grade pa-

rameter, K=a�1 /��
	w � dimensionless shear stress at the wall
� � real function
A � constant

References
�1� Khan, M., Hayat, T., and Asghar, S., 2006, “Exact Solution for MHD Flow of

a Generalized Oldroyd-B Fluid with Modified Darcy’s Law,” Int. J. Eng. Sci.,
44, pp. 333–339.

�2� Fetecau, C., and Fetecau, C., 2005, “On Some Axial Couette Flows of a Non-

Newtonian Fluid,” ZAMP, 56, pp. 1098–1106.
�3� Fetecau, C., and Fetecau, C., 2006, “Starting Solutions for the Motion of a

Second Grade Fluid due to Longitudinal and Torsional Oscillations of a Cir-
cular Cylinder,” Int. J. Eng. Sci., 44, pp. 788–796.

�4� Fetecau, C., and Fetecau, C., 2005, “Decay of a Potential Vortex in an
Oldroyd-B Fluid,” Int. J. Eng. Sci., 43, pp. 430–351.

�5� Fetecau, C., and Fetecau, C., 2005, “Starting Solutions for Some Unsteady
Unidirectional Flows of a Second Grade Fluid,” Int. J. Eng. Sci., 43, pp.
781–789.

�6� Hayat, T., and Kara, A. H., 2006, “Couette Flow of a Third Grade Fluid with
Variable Magnetic Field,” Math. Comput. Modell., 43, pp. 132–137.

�7� Hayat, T., 2005, “Oscillatory Solution in Rotating Flow of a Johnson–
Segalman Fluid,” Z. Angew. Math. Mech., 85, pp. 449–456.

�8� Tan, W. C., and Masuoka, T., 2005, “Stokes First Problem for an Oldroyd-B
Fluid in a Porous Half Space,” Phys. Fluids, 17, pp. 023101.

�9� Chen, C. I., Chen, C. K., and Yang, Y. T., 2004, “Unsteady Unidirectional
Flow of an Oldroyd-B Fluid in a Circular Duct with Different Given Volume
Flow Rate Conditions,” Heat Mass Transfer, 40, pp. 203–209.

�10� Tan, W. C., and Masuoka, T., 2005, “Stokes First Poroblem for Second Grade
Fluid in a Porous Half Space,” Int. J. Non-Linear Mech., 40, pp. 515–522.

�11� Sakiadis, B. C., 1961, “Boundary Layer Behaviour on Continuous Solid Sur-
faces,” AIChE J., 7, pp. 26–28.

�12� Sakiadis, B. C., 1961, “Boundary Layer Behaviour on Continuous Solid Sur-
faces: II. The Boundary Layer on a Continuous Flat Surface,” AIChE J., 17,
pp. 221–225.

�13� Cortell, R., 2006, “Effects of Viscous Dissipation and Work Done by Defor-
mation on the MHD Flow and Heat Transfer of a Viscoelastic Fluid over a
Stretching Sheet,” Phys. Lett. A, 357, pp. 298–305.

�14� Cortell, R., 2005, “Flow and Heat Transfer of a Fluid Through a Porous Me-
dium over a Stretching Surface with Internal Heat Generation/Absorption and
Suction/Blowing,” Fluid Dyn. Res., 37, pp. 231–245.

�15� Cortell, R., 2006, “A Note on Flow and Heat Transfer of a Viscoelastic Fluid
over a Stretching Sheet,” Int. J. Non-Linear Mech., 41, pp. 78–85.

�16� Sadeghy, K., Najafi, A. H., and Saffaripour, M., 2005, “Sakiadis Flow of an
Upper-Convected Maxwell Fluid,” Int. J. Non-Linear Mech., 40, pp. 1220–
1228.

�17� Hayat, T., Abbas, Z., and Sajid, M., 2006, “Series Solution for the Upper-
Convected Maxwell Fluid over a Porous Stretching Plate,” Phys. Lett. A, 358,
pp. 396–403.

�18� Hayat, T., and Sajid, M., 2007, “Analytic Solution for Axisymmetric Flow and
Heat Transfer of a Second Grade Fluid Past a Stretching Sheet, Int. J. Heat
Mass Transfer, 50, pp. 75–84.

�19� Liao, S., 2003, “On the Analytic Solution of Magnetohydrodynamic Flows of
Non-Newtonian Fluids over a Stretching Sheet,” J. Fluid Mech., 488, pp.
189–212.

�20� Xu, H., 2005, “An Explicit Analytic Solution for Convective Heat Transfer in
an Electrically Conducting Fluid at a Stretching Surface with Uniform Free
Stream,” Int. J. Eng. Sci., 43, pp. 859–874.

�21� Liu, I. C., 2005, “Flow and Heat Transfer of an Electrically Conducting Fluid
of a Second Grade in a Porous Medium over a Stretching Sheet Subject to a
Transverse Magnetic Field,” Int. J. Non-Linear Mech., 40, pp. 465–474.

�22� Yürüsoy, M., 2006, “Unsteady Boundary Layer Flow of Power-Law Fluid on
Stretching Sheet Surface,” Int. J. Eng. Sci., 44, pp. 325–332.

�23� Wang, C. Y., 1990, “Liquid Film on an Unsteady Stretching Sheet,” Q. Appl.
Math., 48, pp. 601–610.

�24� Miklavcic, M., and Wang, C. Y., 2006, “Viscous Flow due to a Shrinking
Sheet,” Q. Appl. Math., 64, pp. 283–290.

�25� Liao, S. J., 2003, Beyond Perturbation: Introduction to Homotopy Analysis
Method, Chapman & Hall/CRC, Boca Raton, FL.

�26� Liao, S. J., 2004, “On the Homotopy Analysis Method for Nonlinear Prob-
lems,” Appl. Math. Comput., 147, pp. 499–513.

�27� Liao, S. J., 1999, “A Uniformly Valid Analytic Solution of 2D Viscous Flow
Past a Semi-infinite Flat Plate,” J. Fluid Mech., 385, pp. 101–128.

�28� Liao, S. J., and Cheung, K. F., 2003, “Homotopy Analysis of Nonlinear Pro-
gressive Waves in Deep Water,” J. Eng. Math., 45, pp. 105–116.

�29� Liao, S. J., 2006, “An Analytic Solution of Unsteady Boundary-Layer Flows
Caused by an Impulsively Stretching Plate,” Commun. Nonlinear Sci. Numer.
Simul., 11, pp. 326–339.

�30� Liao, S. J., 2005, “Comparison between the Homotopy Analysis Method and
Homotopy Perturbation Method,” Appl. Math. Comput., 169, pp. 1186–1194.

�31� Abbasbandy, S., 2006, “The Application of Homotopy Analysis Method to
Nonlinear Equations Arising in Heat Transfer,” Phys. Lett. A, 360, pp. 109–
113.

�32� Tan, Y., and Abbasbandy, S., 2007, “Homotopy Analysis Method for Quadratic
Recati Differential Equation,” Commun. Nonlinear Sci. Numer. Simul., in
press.

�33� Zhu, S. P., 2006, “An Exact and Explicit Solution for the Valuation of Ameri-
can Put Options,” Quant. Finance, 6, pp. 229–242.

�34� Zhu, S. P., 2006, “A Closed-Form Analytical Solution for the Valuation of
Convertible Bonds with Constant Dividend Yield,” ANZIAM J., 47, pp. 477–
494.

�35� Wu, Y., Wang, C., and Liao, S. J., 2005, “Solving Solitary Waves with Dis-
continuity by Means of the Homotopy Analysis Method,” Chaos, Solitons
Fractals, 26, pp. 177–185.

�36� Hayat, T., Khan, M., and Ayub, M., 2004, “On the Explicit Analytic Solutions
of an Oldroyd 6-Constant Fluid,” Int. J. Eng. Sci., 42, pp. 1235–135.

�37� Hayat, T., Khan, M., and Asghar, S., 2004, “Homotopy Analysis of MHD

Table 4 Comparison of HAM and exact solutions for shear
stress �w at the wall �=0

K M S HAM solution, Eq. �33� Exact solution, Eq. �8�

0.1 1.5 1.0 1.427490 1.427450
0.2 1.146130 1.146210
0.5 0.358841 0.358816
1.0 −0.855190 −0.855289
1.5 −2.007020 −2.007130
2.0 −3.120720 −3.123660
3.0 −5.594256 −5.594730
5.0 −9.502730 −9.509060
10.0 −19.752400 −19.768000
0.5 1.0 0.0 0.0

1.2 0.136592 0.136510
1.5 0.358841 0.358816
2.0 0.780263 0.780140
3.0 1.794175 1.794080
5.0 4.366281 4.366020
1.5 0.1 −0.658248 −0.658203

0.2 −0.533468 −0.533490
0.5 −0.184517 −0.184580
1.0 0.358844 0.358816
1.5 0.881981 0.882960
2.0 1.396990 1.398320
3.0 2.416510 2.416960
5.0 4.435196 4.435010

Table 3 Comparison of HAM and exact solutions for f at �
=0.2

K M S
HAM solution,

Eq. �33�
Exact solution,

Eq. �8�

0.1 1.5 1.0 0.829654 0.829654
0.2 0.828747 0.828753
0.5 0.826977 0.826944
0.7 0.826439 0.826136
1.0 0.825786 0.825734
2.0 0.823493 0.823478
5.0 0.821473 0.821484
10.0 0.820394 0.820393
20.0 0.819669 0.819669
0.5 1.0 0.818731 0.818731

1.2 0.822586 0.822585
1.5 0.826977 0.826944
2.0 0.832040 0.832758
3.0 0.842011 0.842021
4.0 0.849647 0.849604
5.0 0.856786 0.856129

10.0 - -- 0.879903
20.0 - -- 0.907408

1.5 0.0 −0.071811 −0.071812
0.2 0.027922 0.027922
0.5 0.327404 0.327402
1.0 0.826977 0.826944
1.5 1.326691 1.326690
2.0 1.826531 1.826530
3.0 2.826341 2.826340
5.0 4.826151 4.826150

10.0 9.825981 9.825990

1170 / Vol. 74, NOVEMBER 2007 Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.42. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Flows of an Oldroyd 8-Constant Fluid,” Acta Mech., 168, pp. 213–232.
�38� Sajid, M., Hayat, T., and Asghar, S., 2006, “On the Analytic Solution of

Steady Flow of a Fourth Grade Fluid,” Phys. Lett. A, 355, pp. 18–24.
�39� Abbas, Z., Sajid, M., and Hayat, T., 2006, “MHD Boundary Layer Flow of an

Upper-Convected Maxwell Fluid in Porous Channel,” Theor. Comput. Fluid
Dyn., 20, pp. 229–238.

�40� Hayat, T., Abbas, Z., Sajid, M., and Asghar, S., 2007, “The Influence of Ther-
mal Radiation on MHD Flow of a Second Grade Fluid,” Int. J. Heat Mass
Transfer, 50, pp. 931–941.

�41� Sajid, M., Hayat, T., and Asghar, S., 2007, “Comparison of the HAM and
HPM Solutions of Thin Film Flows of Non-Newtonian Fluids on a Moving
Belt,” Nonlinear Dyn., in press.

�42� Hayat, T., and Sajid, M., 2007, “On Analytic Solution for Thin Film Flow of a
Fourth Grade Fluid Down a Vertical Cylinder,” Phys. Lett. A, 361, pp. 316–
322.

�43� Shercliff, J. A., 1965, A Text Book of Magnetohydrodynamics, Pergamon,
Elmsford, New York.

�44� Nanousis, N. D., 1999, “Theoretical Magnetohydrodynamic Analysis of Mixed
Convection Boundary Layer Flow Over a Wedge with Uniform Suction or

Injection,” Acta Mech., 138, pp. 21–30.
�45� Vajravelu, K., and Rivera, J., 2003, “Hydromagnetic Flow at an Oscillating

Plate,” Int. J. Non-Linear Mech., 38, pp. 305–312.
�46� Hayat, T., Zumurad, M., Asghar, S., and Siddiqui, A. M., 2003, “Magnetohy-

drodynamic Flow due to Non-coaxial Rotations of a Porous Oscillating Disk
and a Fluid at Infinity,” Int. J. Eng. Sci., 41, pp. 1177–1196.

�47� Tokis, J. N., 1978, “Hydromagnetic Unsteady Flow due to an Unsteady Plate,”
Astrophys. Space Sci., 58, pp. 167–174.

�48� Pop, I., Kumari, M., and Nath, G., 1994, “Conjugate MHD Flow Past a Flat
Plate,” Acta Mech., 106, pp. 215–220.

�49� Abel, S., Veena, P. H., Rajagopal, K., and Pravin, V. K., 2004, “Non-
Newtonian Magnetohydrodynamic Flow over a Stretching Surface with Heat
and Mass Transfer, Int. J. Non-Linear Mech., 39, pp. 1067–1078.

�50� Garg, V. K., and Rajagopal, K. R., 1991, “Flow of a Non-Newtonian Fluid Past
a Wedge,” Acta Mech., 88, pp. 113–123.

�51� Vajravelu, K., and Roper, T., 1999, “Flow and Heat Transfer in a Second
Grade Fluid over a Stretching Sheet,” Int. J. Non-Linear Mech., 34, pp. 1031–
1036.

Journal of Applied Mechanics NOVEMBER 2007, Vol. 74 / 1171

Downloaded 04 May 2010 to 171.66.16.42. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Volodymyr Pauk
Faculty of Civil and Environmental Engineering,

Technical University of Kielce,
Kielce 25-314, Poland

e-mail: pauk@tu.kielce.pl

Plane Contact of Hot Flat-Ended
Punch and Thermoelastic
Half-Space Involving Finite
Friction
Plane normal contact of a rigid flat-ended hot punch and a thermoelastic half-space is
considered under the assumption of finite friction between contacting surfaces. The prob-
lem is treated with the boundary integral methods. We consider independently normal
and tangential contact problems. The rise of slip and stick regions under the punch is
studied. The nonlinear equations for the unknown stick region size are obtained and
solved numerically. �DOI: 10.1115/1.2723821�

Keywords: contact problem, finite friction, thermoelasticity, stick, slip

1 Introduction
When a rigid flat-ended punch is pressed symmetrically into an

elastic half-space the common contact area consists of the central
zone of the stick contact and two zones situated symmetrically
near punch corners, in which contacting surfaces slip. The distri-
bution of these zones is unknown and depends on the friction
coefficient and the Poisson ratio. This formulation of the normal
contact problem was proposed by Galin �1�, and was solved by
Spence �2� as an eigenvalue problem. In this paper we study a
similar contact problem assuming that the punch is hot. The plane
contact problem involving a hot punch was considered first by
Borodachev �3�. The effect of thermal stresses in contact problems
is very important. These stresses can lead to a separation between
contacting surfaces. The plane thermoelastic contact involving the
separation in contact zone was considered by Comninou et al. �4�.

In our paper the effects due to the finite friction and thermal
deformation will be treated simultaneously. To simplify the prob-
lem we use the Spence �2� assumption because the friction force
has no effect on the vertical displacements of the half-space
boundary. This assumption permits us to solve the normal prob-
lem independently of the tangential one. After this, having the
distribution of normal traction, we can solve the tangential prob-
lem. The main feature of the thermal contact is that there are two
different situations—full contact and separation, which implies
two regimes of the slip arising in the tangential problem.

The contact problem involving the stick–slip transition is a sub-
ject of considerable interest in investigations of the fretting fa-
tigue. The experimental data due to this phenomenon are widely
presented in special literature. The studies involving thermal ef-
fects on the fretting fatigue are rather rare. The reports of experi-
mental investigations into this topic are presented in the Refs.
�5–8�.

Our paper is organized as follows. In Sec. 2, the normal contact
of the hot punch resting on the elastic half-space is recalled. We
give the solution of this problem for two kinds of punch tempera-
ture and we study a full contact as well as a separation arising for
some level of this temperature.

Section 3 presents the problem of tangential contact in the case
of low temperature for which the normal contact remains over the
whole width of the punch. It is shown that some slipping must

take place near the contact area edges. After this, the problem is
solved under the assumption that both stick and slip regions are
distributed within the common contact area.

A similar study for high punch temperature involving some
separation in the contact zone is presented in Sec. 4.

2 Normal Contact
Let us first consider the plane problem of stationary thermoelas-

ticity for the half-space with the following boundary conditions

�yy�x,0� = �− p�x� , �x� � a

0, �x� � a
�1�

�xy�x,0� = �q�x� , �x� � a

0, �x� � a
�2�

T�x,0� = �T0�x� , �x� � a

0, �x� � a
�3�

where �yy�x ,y�, �xy�x ,y�, and T�x ,y� are stress and temperature
fields in the half-space, and the normal p�x�, tangential q�x� trac-
tions, as well as the contact temperature T0�x� are assumed here to
be prescribed.

The vertical v�x� and horizontal u�x� displacements of the half-
space surface, which are solutions of the boundary problem con-
sidered, can be obtained in the forms �3,9�

��

�x
=

1 − 2�

2�
q�x� +

1 − �

��
�

−a

a
p�s�
s − x

ds −
�1 + ���

�
�

−a

a
T0�s�
s − x

ds ,

�x� 	 
 �4�

�u

�x
= −

1 − 2�

2�
p�x� +

1 − �

��
�

−a

a
q�s�
s − x

ds + �1 + ���T0�x�, �x� 	 


�5�

where �, �, and � are, respectively, the Poisson ratio, shear modu-
lus, and thermal expansion coefficient of the half-space material.

In further analysis we will assume the following, namely, the
first term on the right side of Eq. �4� will be neglected. This means
that the tangential traction has no effect on the vertical displace-
ments of the half-space surface.
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Now we consider the normal indention of the rigid flat-ended
punch into the thermoelastic half-space �Fig. 1�. It is assumed that
the punch has temperature T0�x� and the temperature of the half-
space surface outside the contact path is equal to zero. The prob-
lem is considered to be planar and stationary.

Satisfying the boundary condition of the normal problem

�v
�x

= 0, �x� � a �6�

with the help of Eq. �4� we obtain the following integral equation

1 − �

��
�

−a

a
p�s� − �T0�s�

s − x
ds = 0, �x� � a �7�

where we have introduced the parameter �= �1+�� / �1−����.
The integral Eq. �7� is of the Cauchy type and its solution

satisfying the equilibrium condition

�
−a

a

p�s�ds = P �8�

has the following form �10�

p�x� = �T0�x� +
P − P0

��a2 − x2
, �x� � a �9�

where

P0 = ��
−a

a

T0�s�ds �10�

Further analysis will deal with two forms of the punch tempera-
ture:

�i� constant temperature

T0�x� = T0 = const, �x� � a �11�

�ii� elliptic distribution of the temperature

T0�x� = T0�1 −
x2

a2 = const, �x� � a �12�

In the first case the contact pressure Eq. �9� can be calcu-
lated as

p�x� = �T0 +
P − 2a�T0

��a2 − x2
, �x� � a �13�

When the punch temperature has the form Eq. �12� we find

p�x� = �T0

�a2 − x2

a
+

P −
�

2
a�T0

��a2 − x2
, �x� � a �14�

Simple analysis of the formulas �13� and �14� permits us to
conclude

�a� If −
P

�� − 2�a�
� T0 �

P

2a�
�15�

in the case of constant temperature and

−
2P

�a�
� T0 �

2P

�a�
�16�

in the case of elliptic temperature, where the normal pressure is
positive for �x � �a and we have the full contact between the
punch and half-space �Fig. 1�a��

�b� If T0 �
P

2a�
or T0 �

2P

�a�
�17�

in the case of constant or elliptical temperatures, the normal pres-
sure is negative near the points x= ±a which means that the sepa-
ration arises in the vicinity of the punch corners �Fig. 1�b��. This
situation will be considered later

�c� If T0 	 −
P

�� − 2�a�
or T0 	 −

2P

�a�
�18�

in the case of constant or elliptical temperatures, the separation
arises in the central points of the contact area. This case is called
the “cool punch problem” �4� and effects of finite friction in this
case will be presented separately.

To consider the separation problem �Fig. 1�b�� we need the
solution of the similar contact problem for the parabolic punch. It
can be obtained from the integral equation similar to Eq. �7� with
the right side equal to x /R, where R is the punch radius. The
bounded contact pressure under the parabolic punch of the con-
stant temperature can be obtained in the form

p�x� = �T0 +
2�P − 2a�T0�

�a2
�a2 − x2, �x� � a �19�

where the contact size a satisfies the equation

a2

R
=

2�1 − ��
��

�P − 2a�T0� �20�

When the contact temperature is given by Eq. �12� then the
normal pressure has the form

p�x� =
2P

�a2
�a2 − x2, �x� � a �21�

where the contact size a satisfies the equation

a2

R
=

2�1 − ��
��

	P −
�

2
a�T0
 �22�

The contact size c in the separation problem can be obtained
directly from formulas �20� and �22� as the limiting solution for
R→
 and replacing a by c. We obtain

c =
P

2�T0
�23�

for the constant punch temperature and

Fig. 1 „a… Perfect contact and „b… contact with separation
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c =
2P

��T0
�24�

for the elliptic one.
Corresponding distributions of the normal traction can be ob-

tained from Eqs. �19�, �23�, �21�, and �24� in the forms

p�x� = �T0, �x� � c �25�

and

p�x� = �T0�1 −
x2

c2 , �x� � c �26�

Summarizing this section we have distribution of the normal
pressure as well as the separation contact size.

3 Tangential Contact: The Case of Full Contact
Let us now consider tangential contact in the case of full con-

tact, i.e., conditions �15� and �16� take place, and normal contact
occurs over the path �−a ,a� �Fig. 1�a��.

First we assume the adhesive contact over this path. The bound-
ary conditions of this problem are

�u

�x
= 0, �x� � a �27�

�q�x�� 	 fp�x�, �x� � a �28�

where f is the friction coefficient.
Satisfying condition �27� with help of Eq. �5� we arrive at the

following integral equation

1 − �

��
�

−a

a
q�s�
s − x

ds = − �T0�x� +
1 − 2�

2�1 − ��
p�x�, �x� � a �29�

which should be solved together with the equilibrium condition

�
−a

a

q�s�ds = 0 �30�

The solution of the system Eqs. �29� and �30� depends on the
distribution of the punch temperature and has the form �6�

q�x� = −
�T0

2�1 − ��
x

�a2 − x2
−

1 − 2�

2�1 − ��
P − 2a�T0

�2�a2 − x2
ln�a + x

a − x
� ,

�x� � a �31�

when the temperature is constant, and

q�x� = −
�T0

2�1 − ���� 2x

�a2 − x2
+

�a2 − x2

a
ln�a + x

a − x
��

−
1 − 2�

2�1 − ��

P −
�

2
�T0

�2�a2 − x2
ln�a + x

a − x
�, �x� � a �32�

if the function T0�x� is elliptic given by Eq. �12�.
Analyzing the ratio q�x� / p�x� we conclude that it tends to in-

finity for x→ ±a, which makes impossible the satisfaction of the
boundary condition �28� for finite values of the friction coeffi-
cient. Similar to the pure elastic problem �1,2�, the contact area in
the problem considered is also divided �see Fig. 1�a�� into a cen-
tral region �−b ,b� with the stick conditions

�u

�x
= 0, �x� � b �33�

�q�x�� 	 fp�x�, �x� � b �34�

and lateral zones �−a ,−b�, �b ,a� where the slip conditions

�u

�x
� 0, b 	 �x� � a �35�

�q�x�� = fp�x�, b 	 �x� � a �36�

must be satisfied. The stick area size b is unknown.
Using the presentation of Eq. �5� for horizontal displacements,

the boundary condition �33� gives the integral equation

1 − �

��
�

−a

a
q�s�
s − x

ds = − �T0�x� +
1 − 2�

2�1 − ��
p�x�, �x� � b �37�

Since this equation is written in the stick zone and the unknown
function q�x� is defined in the whole contact region, it is impos-
sible to obtain the solution directly from Eq. �37�. For this reason
we will present the tangential traction in the following form

q�x� = fp�x�sgn�x� − �q0�x� , �x� � b

0, b 	 �x� � a
�38�

which satisfies automatically boundary conditions �34� and �36�.
Here q0�x� is a new unknown function called the corrective trac-
tion.

Substituting the superposition Eq. �38� into Eq. �37� after some
calculations we obtain the integral equation for the corrective trac-
tion

1

�
�

−b

b
q0�s�
s − x

ds = g�x�, �x� � b �39�

where the right side has the form

g�x� = −
�T0

2�1 − ��
+

f�T0

�
�

0

a � 1

s + x
+

1

s − x
�ds

+
1 − 2�

2�1 − ��
P − 2�T0

�a2 − x2
+ f

P − 2�T0

�2 �
0

a � 1

s + x

+
1

s − x
� ds

�a2 − s2
ds, �x� � b �40�

in the case of the constant punch temperature and when it is el-
liptic Eq. �12� we find

g�x� = −
�T0

2�1 − ��

�a2 − x2

a
+

f�T0

�
�

0

a � 1

s + x
+

1

s − x
��a2 − s2

a
ds

+
1 − 2�

2�1 − ��

P −
�

2
�T0

�a2 − x2
+ f

P −
�

2
�T0

�2 �
0

a � 1

s + x

+
1

s − x
� ds

�a2 − s2
ds, �x� � b �41�

The equilibrium condition �30� with the superposition Eq. �38�
reads

�
−b

b

q0�s�ds = 0 �42�

The system Eqs. �39� and �42� has the solution

q0�x� =
1

��b2 − x2�
−b

b �b2 − s2

x − s
g�s�ds =

��x�

��b2 − x2
, �x� � b

�43�

where the function ��x� depends on the punch temperature and,
involving formulas �40� and �41�, can be obtained in the form
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��x� =
��T0x

2�1 − ��
−

1 − 2�

2�1 − ��
�P − 2�T0�I1�x� − f�T0I2�x�

− f�P − 2�T0�I3�x�, �x� � b �44�

in the case of the constant temperature Eq. �11� and

��x� =
��T0I0�x�
2�1 − ��

−
1 − 2�

2�1 − ��	P −
�

2
�T0
I1�x�

− f�T0I4�x� − f	P −
�

2
�T0
I3�x�, �x� � b �45�

in the case of elliptic distribution Eq. �12�. Here the following
integrals

I0�x� =
1

�a�−b

b �b2 − s2�a2 − s2

x − s
ds, �x� � b 	 a �46�

I1�x� =
1

�
�

−b

b �b2 − s2

�a2 − s2

ds

x − s
, �x� � b 	 a �47�

I2�x� = −�
b

a

�s2 − b2� 1

x + s
+

1

x − s
�ds, �x� � b 	 a �48�

I3�x� =
1

�
�

b

a �s2 − b2

�a2 − s2� 1

x + s
+

1

x − s
�ds, �x� � b 	 a �49�

I4�x� = −
1

a�
b

a

�a2 − s2�s2 − b2� 1

x + s
+

1

x − s
�ds, �x� � b 	 a

�50�

are introduced.
In these formulae and in the subsequence K�·�, E�·� are the

complete elliptic integrals of the first and second kinds, respec-
tively �11�.

To provide the continuity of the tangential traction the correc-
tive traction must be bounded in the points separating stick and
slip zones, i.e.,

q0�±b� = 0 �51�
This condition with the aid of formulas �43�–�50� gives the

following equation for the dimensionless stick size =b /a:

�i� for the constant punch temperature Eq. �11�

�1 − ��	 1 − 2�

2�1 − ��f
K�� − K��1 − 2�


+
��

2
ln



1 + �1 − 2
+

�2�

8�1 − ��f
= 0 �52�

where we have introduced the normalized punch temper-
ture

� =
2a�T0

P
�53�

and
�ii� for the elliptic distribution Eq. �12�

�1 − ��	 1 − 2�

2�1 − ��f
K�� − K��1 − 2�
 − 2��K��1 − 2�

− E��1 − 2�� +
�

�1 − ��f
E�� = 0 �54�

where now

� =
�a�T0

2P
�55�

The well-known Spence result �2� for the stick area size in the
case of the isothermal contact

1 − 2�

2�1 − ��f
K�� = K��1 − 2� �56�

may be obtained directly from formulas �52� or �54� setting �
=0.

To find unknown stick size we have nonlinear Eqs. �52� or �55�.
They were solved numerically by the Newton method. Results of
calculations for 0���1 are presented in Figs. 2�a� and 2�b� for
the constant and elliptic punch temperature, respectively. The
problem also depends on the friction coefficient and the Poisson
ratio. For calculations we have taken �=0.3 and four values of f .
We see that the growth of the punch temperature leads to decreas-
ing the stick size =b /a. The difference between results for the
constant and elliptic distributions of the punch temperature is not
great for small values of the friction coefficient, but for f =0.5 this
difference reaches 25% in the limiting point �=1.

Fig. 2 „a… Stick size as a function of the punch temperature in
the case of constant temperature and „b… stick size as a func-
tion of the punch temperature in the case of elliptic
temperature
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4 Tangential Contact: The Case of the Contact With
Separation

Let us now assume that the punch temperature satisfies condi-
tion �17� and the separation between the punch and the half-space
occurs in the region �−a ,−c� and �c ,a�, Fig. 1�b�. The new contact
size c is given by Eqs. �23� or �24� and the corresponding normal
pressure by Eqs. �25� and �26�. Considering the tangential prob-
lem, similarly to the case of the perfect contact, we assume first
that the contact is adhesive in the whole contact path, i.e., the
boundary conditions Eqs. �27�, �28�, are satisfied in each point of
the region �−c ,c�. Similarly to Eqs. �31� and �32� we can find the
distribution of the tangential traction providing the adhesive con-
tact in the forms

q�x� = −
�T0

2�1 − ��
x

�c2 − x2
, �x� � c �57�

for the constant punch temperature Eq. �11� and

q�x� = −
�T0

2�1 − ��
c

�c2 − x2	2x

c
+ 1 −

x2

c2�ln� c + x

c − x
�
, �x� � c

�58�

in the case of elliptic temperature Eq. �12�.
In both cases the ratio q�x� / p�x� tends to infinity for x→ ±c,

what implies the existence of a central region �−d ,d� with the
stick conditions Eqs. �33� and �34� and lateral zones �−c ,−d�,
�d ,c� with the slip conditions Eqs. �35� and �36�. The new stick
size d is unknown.

Further analysis of the contact with separation is similar to that
performed for the perfect contact. The solution for the corrective
traction q0�x� defined in the stick area �−d ,d� has the form

q0�x� =
fP�0�x�

��d2 − x2
, �x� � d �59�

where

�0�x� =
�x

4�1 − ��fc
−

1

2c
J2�x�, �x� � d �60�

in the case of the constant temperature Eq. �11� and

�0�x� =
2

�c
	 �

2�1 − ��f
J0�x� − J4�x�
, �x� � d �61�

in the case of elliptic temperature distribution Eq. �12�. Here the
following integrals

J0�x� =
1

�c�−d

d �d2 − s2�c2 − s2

x − s
ds, �x� � d 	 c �62�

J2�x� = −�
d

c

�s2 − d2� 1

x + s
+

1

x − s
�ds, �x� � d 	 c �63�

J4�x� = −
1

c�
d

c

�c2 − s2�s2 − d2� 1

x + s
+

1

x − s
�ds, �x� � d 	 c

�64�

are introduced.
Satisfying, with aid of the above formulae, the physical condi-

tion

q0�±d� = 0 �65�

we obtain the equation for the dimensionless stick size �=d /c

ln
�

1 + �1 − �2
= −

�

4�1 − ��f
�66�

for the constant punch temperature Eq. �11� and

K��1 − �2� − E��1 − �2�
E���

= −
1

2�1 − ��f
�67�

in the case of elliptic temperature Eq. �12�.
The first of these equations can be solved in the explicit form

� =
2

1 + exp �

4�1 − ��f
� �68�

and the second one should be solved numerically with the help of
the Newton method.

These solutions are presented in Figs. 2�a� and 2�b� in the range
��1 for �=0.3 and four values of the friction coefficient. It is
important to notice that the temperature has no effects on the stick
size in the case of the contact with separation.

5 Conclusions
The contact problem for the rigid hot punch and the thermoelas-

tic half-space was considered. The finite friction under the punch
is involved. It was shown that the boundaries of contacting bodies
slip near the punch edges while the central region of the common
contact area is in the stick condition. The equations for the stick
area size are derived for two cases of the punch temperature. It
was shown that the temperature has the greatest effects on the
stick–slip distribution under the punch. Obtained results can find
an application in the investigation of the contact fatigue and fret-
ting.

Nomenclature
Oxy � coordinate system

a � punch half-width
b � stick size in the case of the perfect

contact
c � separated contact size
d � stick size in the case of the contact with

separation
f � friction coefficient

p�x� � normal traction
q�x� � tangential traction

T�x ,y� � temperature field
u�x ,y� � horizontal displacements
v�x ,y� � vertical displacements

� � thermal expansion coefficient
=b /a � normalized stick size in the case of the

perfect contact
�=d /c � normalized stick size in the case of the

contact with separation
� � Poisson ratio
� � shear modulus

�= �1+�� / �1
−���� � thermoelastic parameter

�yy�x ,y� ,�xy�x ,y� � stresses components

References
�1� Galin, L. A., 1945, “The Punch Indentation With Friction and Adhesion,” J.

Appl. Math. Mech., 9, pp. 413–424.
�2� Spence, D. A., 1973, “An Eigenvalue Problem for Elastic Contact With Finite

Friction,” Proc. Cambridge Philos. Soc., 73, pp. 249–268.
�3� Borodachev, N. M., 1963, “Plane Thermoelastic Problem on the Punch Inden-

1176 / Vol. 74, NOVEMBER 2007 Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.42. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



tation,” Eng. J., 3, pp. 234–240.
�4� Comninou, M., Dundurs, J., and Barber, J. R., 1981, “Planar Hertz Contact

With Heat Conduction,” ASME J. Appl. Mech., 48, pp. 549–554.
�5� Sproles, E. S., and Duquette, D. J., 1978, “Interface Temperature Measure-

ments in the Fretting of a Medium Carbon Steel,” Wear, 47, pp. 387–396.
�6� Attia, M. H., and D’Silva, N. S., 1985, “Effect of Mode of Motion and Process

Parameters on the Prediction of Temperature Rise in Fretting Wear,” Wear,
106, pp. 203–211.

�7� Szolwinski, M. P., Harish, G., Farris, T. N., and Sakagami, T., 1999, “In-Situ
Measurement of Near-Surface Fretting Contact Temperatures in an Aluminum

Alloy,” ASME J. Tribol., 121, pp. 11–19.
�8� Podgornik, B., Kalin, M., Vižintin, J., and Vodopivec, F., 2001, “Microstruc-

tural Changes and Contact Temperature During Fretting in Steel-Steel Con-
tact,” ASME J. Tribol., 123, pp. 670–675.

�9� Johnson, K. L., 1987, Contact Mechanics, Cambridge University Press, Cam-
bridge, UK.

�10� Muskhelishvili, N. I., 1953, Singular Integral Equations, Noordhoff Interna-
tional Publishing, Groningen, The Netherlands

�11� Abramowitz, M., and Stegun, I., 1970, Handbook of Mathematical Functions,
Dover, New York.

Journal of Applied Mechanics NOVEMBER 2007, Vol. 74 / 1177

Downloaded 04 May 2010 to 171.66.16.42. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Martin Karlsson
Student

e-mail: karmar@ltu.se

Jan-Olov Aidanpää
Associate Professor

Division of Computer Aided Design,
Polhem Laboratory,

Luleaa University of Technology,
Luleaa, Norrbotten 97187, Sweden

Richard Perers
Student

Mats Leijon
Professor

Department of Electricity,
Aangstroem Laboratory,

Uppsala University,
Uppsala 751 21, Sweden

Rotor Dynamic Analysis of an
Eccentric Hydropower Generator
With Damper Winding for
Reactive Load
Asymmetry in the magnetic circuit, around the air gap circumference, in a hydroelectric
generator will give rise to a unbalanced magnetic pull. In this paper, a hydropower rotor
system is modeled and the influence of electro-mechanical forces due to overexcitation is
analyzed. The active power has been kept constant and the rotor excitation has been
changed in order to vary the output of reactive power. The electromagnetic field is solved
with the finite element method. Two electromagnetic models are compared: one with and
one without damper winding. The mechanical model of the generator consists of a four
degrees of freedom rigid disk connected to an elastic shaft supported by two bearings
with linear properties. It has been found that the unbalanced magnetic pull slightly
increases for reactive loads resulting in a decrease of natural frequencies and an increase
of unbalance response. When the damper winding is included, the magnetic pull will
decrease compared to the model without damper winding, and the pull force has two
components: one radial and one tangential. The tangential component can influence the
stability of the mechanical system for a range of design parameters.
�DOI: 10.1115/1.2723822�

1 Introduction
Asymmetry of the magnetic circuit in electrical machines can

lead to vibrations. An off-centered rotor in a generator results in
asymmetry in the air gap. The rotor will be affected by forces due
to the asymmetrical magnetic field around the air gap. To deter-
mine the forces due to the asymmetrical magnetic field, the mag-
netic flux density must be determined in the whole air gap region
around the rotor. The determination of magnetic forces has been
carried out for more than a century.

Early papers by Behrend �1�, Gray �2�, and Robinson �3� sug-
gested linear equations for magnetic pull. Covo �4� and Ohishi et
al. �5� considered the saturation of the magnetic core to improve
the magnetic pull equations. Früchtenicht et al. �6� observed the
existence of two electromechanical force components �one radial
and one tangential� when the rotor performs a circular motion. An
analytical model for vibrations in induction motors was presented
by Belmans et al. �7,8�. Smith et al. �9� derived analytical equa-
tions for unbalanced magnetic pull in induction motors using the
air gap permeance approach, including stator and rotor magneto-
motive force �MMF� harmonics. Arrkio et al. �10� solved the mag-
netic field for cage induction motors using time-stepping finite
element analysis to numerically determine a linearized electro-
magnetic force for rotor dynamic analysis. Tenhunen et al.
�11–14� have used the same technique to develop the electro-
mechanical force calculations for rotor-dynamical analysis.

Most papers published regarding unbalanced magnetic pull
concern asynchronous motors. However, in the area of synchro-
nous generators, there are only a few papers published. Gustavs-
son et al. suggested a linear model �15� and a nonlinear model
�16� for the radial magnetic pull in a hydropower synchronous
generator. In these models, the distance between the generator
rotor rim and spider hub were also considered. Karlsson et al. �17�
presented a linear model for the radial force due to the discrete

shape of the rotor and stator. Lundström et al. �18� presented a
continuous radial force model due to the rotor and stator shape.
Normally, only radial magnetic forces are considered in dynamical
models of synchronous machines. Lundström et al. �19� showed
the existence of a tangential magnetic force component in syn-
chronous machines due to the damping winding and used a lin-
earized model to analyze the rotor dynamical behavior of these
forces. Burakov et al. �20� used the same techniques as Arrkio et
al., and Tenhnunen et al. �10,14� to determine a low-order para-
metric force model for a salient-pole synchronous machine. Bura-
kov et al. �21� continued the work and carried out analysis of the
influence of parallel connections in the stator winding. Tampion et
al. �22� analyzed stator vibrations of a turbo generator stator core
due to a reactive load and showed the effect of the reactive load
on the vibrations of the stator core. Karlsson et al. �23� concluded
that variation of active load, for a synchronous generator, only
slightly influenced the electro-mechanical interaction of rotor sys-
tems. In this paper, a rotor dynamical analysis for different reac-
tive loads at constant active load for a hydropower generator rotor
with eccentricity is carried out.

2 Modeling and Simulation
The mechanical and electromagnetic systems are modeled sepa-

rately. Initially, simulations are carried out for the electromagnetic
field to obtain a force due to static eccentricity. These forces are
then used in the mechanical calculations.

2.1 Brief Theory of Unbalanced Magnetic Pull. In the case
of static eccentricity the rotor center is displaced relative to the
stator center with a distance e �see Fig. 1�. In the rotor frame
�subscript r in Fig. 1� the air gap length is a function of both
angular position, �, and time, t, according to

���,t� = �0�1 − � sin�� + �t�� �1�

where �0 is the nominal air gap length; � is the rotational fre-
quency of the rotor; and � is the relative eccentricity defined as the
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ratio between the absolute eccentricity divided by the nominal air
gap length.

In the rotor coordinate system the fundamental magnetomotive
force �MMF� component can be expressed as

F��� = F1 cos�p�� �2�

where p is the number of pole pairs. For small eccentricities the
varying air gap permeance can be expressed as

���,t� =
�0

���,t�
=

�0

�0�1 − � sin�� + �t��
�

�0

�0
�1 + � sin�� + �t��

�3�

where �0 is the relative permeability of free space. The air gap
flux density of a machine with an eccentric rotor can be expressed
as the product of Eqs. �2� and �3� according to

B = Bp sin�p�� + Bp+1 sin��p + 1�� + �t� − Bp−1 sin��p − 1�� − �t�
�4�

where Bp=F1 /�0 and Bp±1=�Bp /2. The static eccentricity thus
gives rise to two parasitic waves, with pole pair numbers p±1,
moving relative to the rotor. These parasitic waves will induce
currents with frequency � in the damper winding. The damper
currents do rise to a secondary set of air gap flux density waves,
which opposes its origin according to the Lenz law.

2.2 Mechanical System. The mechanical rotor system is
modeled as a Stodola–Green rigid disk, connected to a uniform
elastic and massless shaft supported by two linear–elastic bearings
with bearing stiffnesses kA and kB. The shaft has length, L,
Young’s modulus, E, and area moment of inertia, I. The position
of the rotor rim geometrical center �and center of gravity� is in
position �L, where � is a nondimensional number ���1�. The
disk represents the physical properties of a generator with the
masses of rotor rim, mr, and rotor poles, mp, polar moment of
inertia, JP, and diametrical moment of inertia, JD. The disk spins
with an angular velocity, �, and has an unbalance, u, in the lateral
directions. The geometrical center and center of gravity of the
poles are displaced a distance l from the center of the rotor rim.
The mechanical model is illustrated in Fig. 2. The disk can trans-
late in two directions, x and y, and rotate around the same. Hence,
the rotor system has four degrees of freedom. With matrix nota-
tion, the equations of motion are

M̄x�̈ + ��Ḡ + C̄�x�̇ + K̄x� = F� �5�
where the mass and moments of inertia matrix, gyroscopic matrix,
and stiffness matrix are

M̄ =�
m 0 0 0

0 m 0 0

0 0 J 0

0 0 0 J
�, Ḡ =�

0 0 0 0

0 0 0 0

0 0 0 JP

0 0 − JP 0
�

K̄ =�
k11 0 0 k12

0 k11 − k12 0

0 − k12 k22 0

k12 0 0 k22

� �6�

where m=mr+mp and J=JD+mpl2. The stiffness matrix is derived
by the inverse of the flexibility matrix

	̄ =�

 0 0 − �

0 
 � 0

0 � � 0

− � 0 0 �
� �7�

where the coefficients


 =
L3�22

3EI
+

�2

kB
+

2

kA
�8�

� =
L2��� − �

3EI
−

1

L
� �

kB
−



kA
	 �9�

� =
L�1 − 3��

3EI
+

1

L2� 1

kB
+

1

kA
	 �10�

are determined using beam theory and =1−�. The damping ma-
trix due to bearing damping is constructed in the same manner as
the bearing part of the stiffness matrix �e.g., ci is used instead of ki
in Eqs. �8�–�10��, which result in the matrix

Fig. 3 Part of the computational mesh for the electric field

Fig. 1 Static rotor eccentricity

Fig. 2 Rotor geometry
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C̄ =�
c11 0 0 c12

0 c11 − c12 0

0 − c12 c22 0

c12 0 0 c22

� �11�

The displacement vector is

x� = �x y �x �y�T �12�

where x and y are lateral displacements and �x and �y are rota-
tions around the x and y axis. The unbalanced force vector is

F� = �mu�2 cos��t�mu�2 sin��t� 0 0�T �13�

where t is the time.

2.3 Computing the Electromagnetic Field. The electromag-
netic field in the generator is solved for a two-dimensional axial
cross section. A nonlinear magnetic material with a single-valued
magnetization curve for the rotor and stator is used. Coil end
impedance is approximately included by circuit equations. The
magnetic field is solved through a time-stepping finite element
technique for a rotating field. The field winding was supplied from
a constant current source. The magnitude of the current was ob-
tained from the stationary model. In the time-varying solution the
magnetic field is viewed from a fixed coordinate system in the
stator and from a rotating system in the rotor. The time depen-
dence of the rotating field is taken care of by time depending
boundary conditions via a line placed in the middle of the air gap
between the rotor and the stator. Circuit equations connect the
field solution to the coil end impedance and the external load. The
voltages, currents, and electromagnetic torque are obtained from
combined field and circuit equations simultaneously solved with
the time-stepping finite element technique. Additional circuit
equations are added to describe the damper winding network. The
damper winding forms a continuous cage similar to the squirrel
cage in an induction machine except for the fact that the damper
bars are embedded only in the salient poles.

Due to the asymmetrical geometry created by the eccentric ro-
tor, the whole generator must be modeled, resulting in extensive
computations. A typical mesh contains about 85,000 elements.
Figure 3 shows the finite element mesh of the generator, which is
more detailed in the areas of special interest, such as the air gap,
the stator teeth, and in the damper winding. The mesh is coarser in
areas of less importance, such as the stator yoke and the rotor rim,
to save computational time.

The two-dimensional model enables the magnetic vector poten-
tial to be expressed as

A� = Az�x,y,t�z� �14�

The magnetic vector potential is solved for every node in the
domain according to

�
�Az

�t
= �� 1

�0�r
� Az	 − �

�V

�z
�15�

where � is the conductivity; �0�r is the magnetic permeability;
and �V /�z is the applied potential. The applied potential is a
source term that connects external circuits to the field equations.
The magnetic flux density is calculated from the magnetic poten-
tial according to

B� = rot�A�� �16�

Figure 4 shows the magnetic field lines in a synchronous genera-
tor obtained from the finite element calculations.

In order to compute the electromagnetic forces, acting between
the rotor and the stator, numerically both energy methods or Max-
well’s stress tensor can be applied. The methods give the same
result for a sufficiently accurate mesh. The forces according to
Maxwells stress tensor can be computed as a surface integral in
the air gap, where the integration surface is a band placed in the

middle of the air gap between the rotor and the stator in the
two-dimensional cross section. The surface integral is defined as

F� =
1

D

Sd

� 1

�0
BrB��� +

1

2�0
�Br

2 − B�
2�r��dS �17�

where Br and B� are the radial and tangential components of the
magnetic flux density; D is the width of the air gap band; and Sd
is the cross-sectional area of the air gap band. This method has
shown to give an accurate result �24�.

Coulomb �25� presented a method to calculate the forces based
on the principle of virtual work. The electromagnetic force is de-
fined using the magnetic coenergy

Wc =

V
�


0

H

B� dH�	dV �18�

In the two-dimensional model the volume integral becomes a sur-
face integral over the air gap region. The forces are calculated as
the derivatives of the coenergy in the air gap, according to

Table 1 Numerical data of Porjus U8

Item Value Unit

mr
Mass rotorrim 21,000 kg

mp
Mass rotorpoles 9000 kg

JD
Diametric moment of inertia 11,406 kg m2

JP
Polar moment of inertia 20,000 kg m2

E Young’s modulus 200 GPa
I Area moment of inertia 0.0635 m4

kA
Bearing stiffness 500 MN/m

kB
Bearing stiffness 500 MN/m

L Length of the shaft 3.6 m
�1

Damping parameter 0.001 s
�2

Damping parameter 3 1/s
� Rotational speed 22.44 rad/s
u Unbalance 0.28 mm
S Apparent power 11 MVA
P Real power 9 MW
V Voltages 10 kV
cos��� Power factor 0.9 —
n Number of poles 14 —
fel

Grid frequency 50 Hz
Dinner

Stator inner diameter 2.53 m
Douter

Stator outer diameter 3.10 m
h Rotor length 0.75 m
nd Number of damper bars per pole 6 —

Fig. 4 Magnetic field around one pole obtained from
calculations
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Fx =
�Wc

�x
, Fy =

�Wc

�y
�19�

The forces used in this paper have been calculated by both Max-
well stress tensor and Coulombs method, giving the same result
with sufficient accuracy.

2.4 Interaction With the Mechanical System. If the rotor is
displaced with a small distance e in the y direction, a linearized
force due to the magnetic field can be written as

Fy = kM,re �20�

Fx = kM,te �21�

where kM,r and kM,t are the radial and tangential magnetic stiff-
nesses obtained from the electromagnetic calculations. The radial
magnetic stiffness is the stiffness in the eccentricity direction, and
the tangential magnetic stiffness is the stiffness in the perpendicu-
lar direction of the eccentricity due to the magnetic pull. The

electromechanical forces and moments, FM
�, on the rotor will be

dependent on the rotor displacement, x and y, the inclination of
the rotor, �x and �y, and the distance, l, between rotor spider hub
and the geometrical center of the rotor rim. These forces and
moments are obtained by integrating the radial and tangential
force distribution over the rotor height, h

FM
� =�



l−h/2

l+h/2 � kM,rx

h
+

kM,ty

h
+

kM,r�y

h
� −

kM,t�x

h
�	d�



l−h/2

l+h/2 � kM,ry

h
−

kM,tx

h
−

kM,r�x

h
� −

kM,t�y

h
�	d�



l−h/2

l+h/2 �−
kM,ry

h
+

kM,tx

h
+

kM,r�x

h
� +

kM,t�y

h
�	�d�



l−h/2

l+h/2 � kM,rx

h
+

kM,ty

h
+

kM,r�y

h
� −

kM,t�x

h
�	�d�

�
=�

kM,r 0 0 lkM,r

0 kM,r − lkM,r 0

0 − lkM,r �kM,r 0

lkM,r 0 0 �kM,r

��
x

y

�x

�y
�

+�
0 kM,t − lkM,t 0

− kM,t 0 0 − lkM,t

lkM,t 0 0 �kM,t

0 lkM,t − �kmM,t 0
��

x

y

�x

�y
�

= �K̄m,r + K̄m,t�x� �22�

where

� =
1

3h
��h

2
+ l	3

+ �h

2
− l	3	 �23�

The matrices in Eq. �22� is the magnetic stiffness matrices. Add-
ing Eq. �5� to Eq. �22� to derive the equations of motion for the
electro-mechanical rotor system

M̄x�̈ + ��Ḡ + C̄�x�̇ + �K̄ − K̄m,r − K̄m,t�x� = F� �24�

2.5 Natural Frequencies and Stability. Equation �24� is
transferred to a system of first-order equations

�− Ī N̄

N̄ M̄
	� ẋ�

ẍ�
	 + � N̄ Ī

K̄ − Km C̄ + �Ḡ
	�x�

ẋ�
	 = �B�

F�
	 �25�

where N̄ and B� are zero valued matrix vectors, respectively. With
the matrix notation, Eq. �25� becomes

− S̄ẏ� + R̄y� = H� �26�

The homogeneous solution to Eq. �26� is

y�h�t� = 
i=1

n

DiYi
�e�it �27�

where Ȳi are the eigenvectors corresponding to the eigenvalues �i;
and Di are constants determined by initial conditions. The eigen-
values are complex and can be expressed as

�i = �i + i�n,i �28�

where �i is the decay rate and �n,i is the damped eigenfrequency.
The system is stable if all eigenvalues have a negative decay rate.

Fig. 5 The radial Fy, tangential Fx, and resulting F force on the
rotor for 9 MW active power and varying reactive power, solved
with „a… and without „b… damper winding. „Note that there will
not be a tangential contribution to the total unbalance magnetic
pull for the calculation without damper.…
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2.6 Unbalanced Response. For the case of unbalanced exci-
tation, the particular solution to Eq. �26� becomes

y�p�t� = a� sin��t� + b� cos��t� �29�
with

a� = ��2SR−1S̄ + R̄�−1�Hs
� − �SR−1Hc

�� �30�

b� = R̄−1�Hc
� + �S̄a�� �31�

H�s = �0 0 0 0 0 mGu�2 0 0 �T �32�

H�c = �0 0 0 0 mGu�2 0 0 0 �T �33�
The unbalanced response is analyzed to investigate how the reac-
tive load affects the amplitude of the vibrations.

3 Results
The simulations were carried out for the research and education

unit Porjus U8 hydropower generator, located at Porjus Interna-
tional Hydropower Centre, the Municipality of Jokkmokk, in
northern Sweden. Numerical data are presented in Table 1.

Computations of the UMP have been carried out for 20% static
eccentricity. The rotors have been displaced in the y direction
according to Fig. 1. The real power has been kept constant to
9 MW and the rotor excitation has been changed in order to vary
the output of reactive power. Calculations have been done with
and without the damper winding. The results are presented in Fig.
5.

In the absence of damper winding, only one force component
exists and it points in the y direction toward the smallest air gap.
This force component is referred to as the radial force component.
If the damper winding is taken into account a force component
perpendicular to the eccentricity direction in the x direction oc-
curs. This force component is referred to as the tangential force
component. The magnitude of the magnetic pull force is reduced
and the direction is shifted from the short air gap, to the direction
towards the rotation, when the damper winding is considered. The
UMP is reduced because of the damper cage reaction, which will
counteract the parasitic eccentricity flux harmonics and thus
equalize the flux distribution around the air gap circumference
according to the reasoning in Sec. 2.1. The unbalanced force cre-
ated by the eccentricity is almost constant in time, except for a
small ripple due to the salient poles representing only about 1% of
the steady-state force.

Fig. 6 First forward natural frequency when �=0.1 and l /h=
−0.50, −0.25, 0.00, 0.25, 0.50, for the rotor system for 9 MW ac-
tive power, varying reactive power and electrical model with „a…
and without „b… damper winding

Fig. 7 First forward natural frequency when �=0.3 and l /h=
−0.50, −0.25, 0.00, 0.25, 0.50, for the rotor system for 9 MW ac-
tive power, varying reactive power and electrical model with „a…
and without „b… damper winding
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The UMP slightly increases when the rotor excitation is in-
creased. The magnitude of the fundamental magnetic flux compo-
nent, the largest contributor to the unbalanced force, increases
with rotor excitation since a larger fundamental is needed to ob-
tain the rated voltage due to the internal voltage drop over the
leakage reactance. The increase of the UMP force decays for large
rotor excitations due to saturation.

In Figs. 6 and 7, the change of the first forward natural frequen-
cies are presented for different reactive loads. In Figs. 8 and 9, the
change of the steady-state response is presented for different re-
active loads. The Porjus U8 is stiffer than most commercial hy-
dropower units. To predict how the reactive load will influence a
more general case, a stability analysis is carried out for a variation
in bearing stiffness. The ratio between bearing stiffness kA,� and
kB,� and the nominal bearing stiffness kA and kB used is introduced
as

� =
kA,�

kA
, kB,� = kA,� �34�

Figures 10 and 11 present the stability regions for the rotor
system with different bearing properties and different reactive
loads and Figs. 12 and 13 present the stability regions for the rotor
system with a variation in mechanical parameters.

4 Discussion
According to Figs. 6–9, one can see that the first forward natu-

ral frequencies decrease and the unbalanced responses increase for
an increase in reactive load. For the case Porjus U8, the influence
of reactive load is relatively small due to a stiff rotor system. For
a weaker rotor system the influence of reactive power on the re-
sponse and natural frequencies will be stronger. According to
Figs. 10–13, one can see that the stability region, for simulations
with damper winding, decreases with an increase of reactive
power, and for simulations without damper winding only a small
influence of the reactive load is noted. The radial electro-
mechanical component will result in the negative stiffness matrix
and the tangential component will result in the skew-symmetric
electro-mechanical matrix. Both these magnetic stiffness matrices
will influence the stability of the rotor system. The tangential
electro-mechanical force component only exists in the case with
damper winding and has a strong influence on the stability of the
rotor system.

The simulations are carried out for a generator with a relatively
stiff rotor-bearing system. The design is unique for each hydro-
power generator so there exist generators with a range of stiff-
nesses of the rotor-bearing system. The tendency of behaviors for

Fig. 8 Unbalance response when �=0.1 and l /h=−0.50, −0.25,
0.00, 0.25, 0.50, for the rotor system for 9 MW active power,
varying reactive power and electrical model with „a… and with-
out „b… damper winding

Fig. 9 Unbalance response when �=0.3 and l /h=−0.50, −0.25,
0.00, 0.25, 0.50, for the rotor system for 9 MW active power,
varying reactive power and electrical model with „a… and with-
out „b… damper winding
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different machines is therefore presented by decreasing the bear-
ing stiffness in order to analyze how reactive load will affect a
hydroelectric rotor system in general.

In this paper the electro-mechanical interaction is modeled as a
linear displacement dependent force. According to the results in
Ref. �20� the electro-mechanical force will be dependent on the
whirling frequency. The radial component of the electro-
mechanical force will increase near the synchronous whirling fre-
quency and the tangential component will decrease. An explana-
tion for this behavior is when the rotor is whirling
asynchronously, the damper windings want to force the whirling
to synchronously speed. During synchronous whirling there will
not be any current in the damper windings and the result is the
same UMP as in simulations without damper windings. The com-
putational cost to carry out similar calculations as in Ref. �20� on
a 11 MVA 14-pole generator at different loads limited the study
in this paper to only be concerned with static eccentricity in the
electro-mechanical model. The model does not consider parallel
paths of the stator winding, where equalizing currents in the par-
allel paths have a damping effect of the UMP in electrical ma-

chines. In Ref. �26� it is shown for an induction machine that
parallel connections in the stator winding have about the same
influence on the UMP as the rotor cage, depending on the rotor
slot opening width. The rotor system is modeled as a massless
shaft, the bearings are assumed linear, and the generator is as-
sumed rigid. The turbine and turbine bearing are not included in
the model. The reason for the simplifications used in this paper is
that the model is used to predict the tendency of an electro-
mechanical phenomenon rather than to simulate a specific unit in
detail.

5 Conclusions
In this paper, it has been numerically shown that a change in

reactive load will change the electro-mechanical force, thereby
influencing the natural frequencies, unbalanced response, and the
stability of the system. This implies that changes in the reactive
load of a synchronous generator can change the dynamical behav-
ior of the machine.

In this paper, it has been observed that for the case with damper
winding compared to the case without damper winding,

Fig. 10 Stability region of the rotor when �=0.1, l /h=0, and
variation of �, for simulations with „a… and without „b… damper
windings

Fig. 11 Stability region of the rotor when �=0.3, l /h=0, and
variation of �, for simulations with „a… and without „b… damper
windings
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• The first natural frequency increases;
• The unbalance response decreases; and
• The stability region decreases.

One can conclude that the machine will be operating under
better conditions, but the stability of the machine might be af-
fected. These observations are practical and it is useful for plant
owners and the power utility industry to plan operations and main-
tenance. In planning production of reactive power one should con-
sider whether the machine is suitable due to the dynamical robust-
ness.
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Stability of the Boiling Two-Phase
Flow of a Magnetic Fluid
Elucidation of magnetic stabilization of boiling two-phase flow by utilizing the magneti-
zation of the fluid is proposed herein. The effect of magnetic field on the stability of the
boiling two-phase pipe flow of the magnetic fluid under a nonuniform magnetic field is
investigated both theoretically and experimentally. First, governing equations of boiling
two-phase flow based on the unsteady thermal nonequilibrium two-fluid model are pre-
sented and analytically solved using a linearization method. The analytical results on
stabilization are then inspected experimentally using an experimental apparatus com-
posed of a small test loop. Results of the analytical study on the void waves, show that the
stabilization of two-phase flow can be obtained by practical use of the magnetic body
force acting on the fluid and by applying the appropriate superficial gas-phase velocity.
Those results also show that magnetic stabilization is obtained because the two-phase
magnetic body force enhances the diffusion effect of the void waves. It is experimentally
clarified that the two-phase flow state can be stabilized and homogenized by magnetiza-
tion of the fluid and that vapor bubbles can be minutely produced by effective use of the
magnetic body force. The axial magnetic field is more effective for stabilization and
homogenization of the two-phase magnetic fluid flow than the transverse magnetic field.
�DOI: 10.1115/1.2723825�

Keywords: magnetic fluid, multiphase flow, stability, boiling, magnetohydrodynamics,
liquid metal MHD

1 Introduction
Precise investigation of the stability of a two-phase flow of a

magnetic fluid �1,2� is very interesting and important not only as
the basic study on hydrodynamics of magnetic fluids, but also for
finding solutions to problems related to the development of prac-
tical engineering applications of magnetic fluids, such as a new
fluid driving system using cavitating flow of magnetic fluid, gas-
liquid two-phase flow or boiling two-phase flow of magnetic fluid,
which have been proposed by one of the authors �3,4�.

The boiling two-phase flow system has the advantage of not
requiring high-speed flow for producing the two-phase flow state.
Furthermore, with this system, as opposed to the cavitating flow
system, a closed flow circulation loop with low fluid velocity can
be achieved. The principle of such a fluid driving system is sche-
matically depicted in Fig. 1. In this boiling system, the flow is
heated in the region of the negative magnetic field gradient, and
boiling nucleation is induced at a point downstream. Furthermore,
the flow is additionally accelerated not only by the pumping effect
of the vapor bubbles, but also by the rise of magnetic pressure
induced by the unbalance of magnetic body forces in the single-
and two-phase flow regions under a nonuniform magnetic field.
The decrease of magnetic body force in the two-phase region is
caused by �1� a decrease of apparent magnetization due to vapor
bubble inclusion, and �2� a decrease of magnetization due to the
temperature increase. In order to utilize the temperature sensitivity
in magnetization of the fluid more effectively, the working fluid
herein assumed is hexane-based temperature sensitive magnetic
fluid with dispersed Mn–Zn ferrite particles. Therefore, this sys-
tem is regarded as an energy conversion system by which thermal
energy can be converted to fluid kinetic �driving� energy.

The idea of using a two-phase flow system originated from the
two-phase liquid-metal MHD power generation system proposed
and developed by Petrick and Branover �5�. Subsequent to their
proposal, we reported the results of a theoretical study which

demonstrated the possibility of using an electrically conducting
magnetic fluid �6–10� as a working fluid in a boiling two-phase
liquid-metal MHD �LMMHD� power generation system �11�. Our
results indicated that a better driving force or pressure rise than
that of the conventional system could be obtained by using an
electrically conducting magnetic fluid as the working fluid due to
the advantage of the practical application of fluid magnetization.
These previous studies indicate that high performance of a power
generation system is possible by the application of an electrically
conducting magnetic fluid to the working fluid in the two-phase
LMMHD �12,13� power generation system. It was also predicted
that stabilization of two-phase flow is closely related to the driv-
ing performance as well as to the development of such energy
conversion systems. Thus, it is necessary to precisely analyze the
effect of a magnetic field on the stabilization of the boiling two-
phase magnetic fluid flow. Furthermore, presented stability analy-
sis does not only contribute to the development of the two-phase
LMMHD power generation systems, but also contribute to the
stability improvement for any kind of fluid driving system or fluid
acceleration system which utilizes the boiling two-phase flow
method.

The idea of magnetic stabilization of two-phase flow originated
from research on the magnetically stabilized bed �MSB� �14–18�.
Rosensweig �1,2� analyzed the hydrodynamic stability in the state
of uniform fluidization using equations of motion in conjunction
with expressions for magnetic stress. In spite of the progress in
research on MSB, significant results on the magnetic stabilization
of the boiling two-phase flow of magnetic fluid have not been
obtained to date. In the application of boiling two-phase flow of
magnetic fluid to an actual energy conversion apparatus, it is im-
portant to analyze the two-phase flow stability so as to improve
the total performance of a fluid circulation system using multi-
phase flow. However, there have been no precise investigations of
the two-phase stabilization problem. One of the difficulties in such
a study is that the basic equations for theoretical analysis of the
stability of two-phase flow have not been established. Further-
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more, experimental confirmation due to the opaqueness of the
fluid and the strong effect of applied magnetic fields on the mea-
suring devices is difficult �3�.

To overcome these difficulties, we construct a new model for
theoretical analysis of boiling two-phase magnetic fluid flow
which is based on the unsteady thermal nonequilibrium two-fluid
model �19,20�. We also develop a special measurement technique
to investigate the stability of the two-phase flow using a high-
response pressure transducer and flow visualization technique
with an image processor.

In the present paper, theoretical and experimental studies are
made to clarify the effects of a nonuniform magnetic field on the
stability of the boiling two-phase pipe flow of magnetic fluid. To
clarify the effect of magnetic field on the stability of such flow,
governing equations of boiling two-phase flow based on the un-
steady thermal nonequilibrium two-fluid model �19,20�, which
takes the effect of a two-phase magnetic body force acting on the
boiling magnetic fluid flow state into consideration, are proposed
and analytically solved by using the linearization method �1,14�.
Additionally, the analytical results on magnetic stabilization are
inspected experimentally by using an experimental apparatus
composed of a small test loop.

2 Theoretical Study
To clarify the stability of the two-phase flow, it is important to

investigate the mechanism of the generation of an unstable flow
state. In the case of boiling two-phase flow, the main factor for the
generation of the unstable flow state is considered to the rapid

change and transition of the flow pattern. We mainly analyzed the
stability and the dispersion relation of the void fraction perturba-
tion because the transition of the flow state is closely related to the
stability, growth, and decay of the void fraction perturbation in the
boiling two-phase flow.

2.1 Governing Equations. The following assumptions are
employed to formulate the governing equations:

1. The state of the two-phase flow is one-dimensional unsteady
laminar flow.

2. The magnitude of small disturbance waves is sufficiently
large compared to the bubble diameter.

3. The thermal nonequilibrium between gas and liquid phases
is considered.

4. The direction of the magnetization vector is instantaneously
tracked to that of the magnetic field vector.

Under the above conditions, the governing equations of the
boiling two-phase magnetic fluid flow, taking into account the
effect of nonuniform magnetic field based on the unsteady two-
fluid model, are derived as follows.

The mass conservation equation for the gas and liquid phases is

�

�t
��k�k� +

�

�z
��k�kvk� = �k �1�

where the subscript k denotes the gas phase �k=g� or liquid phase
�k= l�. t is the time, �g and �l are the gas- and liquid-phase vol-
ume fractions, respectively, �g and �l are the gas and liquid-phase
densities, respectively. The relationship ��g+�l=1� is assumed.
�g and �l are the gas and liquid-phase generation densities,
respectively.

The combined equation of motion for the total gas and liquid
phase is

�

�t
��g�gvg + �l�1 − ��vl� +

�

�z
��g�vg

2 + �l�1 − ��vl
2�

= −
�pl

�z
− �1 − ���lg + FmTz + �g�vg

�i� − vl
�i��

−
32��g�vg + �l�1 − ��vl�

D2 �2�

where FmTz represents the magnetic body force term in two-phase
flow which is precisely explained in the next section. The super-
script �i� denotes the interface between the gas and liquid phases.
To consider the effects of slip and radial expansion of the bubbles,
the equation of motion for the gas phase is here replaced with the
translational motion of a single bubble �21�.

The equation of motion for the gas phase is

4

3
�R̄3�g� �vg

�t
+ vg

�vg

�z
� = −

4

3
�R̄3�pl

�z
−

4

3
�R̄3�gg − FD − FVM

�3�

where R̄ is the mean radius of bubbles defined by the following
Eq. �9�, FD is the drag force, and FVM is the virtual mass force
considering the expansion of a bubble �21,22�.

The energy equation for the gas phase is

�

�t
��g�vg

2� +
�

�z
��g�vg�hg +

vg
2

2
�� = − �g�vgg + �ghg

�i� + qg
�i�a�i�

�4�
The energy equation for the liquid phases is

Fig. 1 Principle of two-phase energy conversion system using
boiling two-phase flow of magnetic fluid. Magnetic body force
Fu=�0M·�H=Fd in the case without boiling, and Fd= „1
−�…�0M*·�H<Fu in the case with boiling.
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�

�t
��l�1 − ��vl

2� +
�

�z
��l�1 − ��vl�hl +

vl
2

2
��

= − �l�1 − ��vlg + �lhl
�i� + ql

�i�a�i�

− �1 − ���0Tl� �Ml

�Tl
�

HT

vl
�HT

�z
+ Qw �5�

where the fourth term on the rhs is the magnetocaloric effect, Qw

is the heat transfer rate per unit volume. hg
�i� and hl

�i� are the en-
thalpy of the gas-phase and that of the liquid-phase at the inter-
face, respectively. a�i� is the gas-liquid interfacial area concentra-
tion per unit volume. �ghg

�i� and �lhl
�i� are the interfacial energy

transfer terms due to the liquid-vapor phase change. qg
�i� and ql

�i�

are the heat transfer terms of mutual interaction between the vapor
and liquid interface.

It is assumed that energy transfer is caused by the heat transfer
between an isothermal spherical bubble and the surrounding liq-

uid. Assuming a spherical bubble with equivalent radius R̄, the
expression of a�i� is obtained by the following equation:

a�i� =
3�

R̄
�6�

Assuming that the vapor gas phase follows the ideal gas law,
the equation of state for gas-phase is derived as

pg = RTg�g �7�

where R is the gas constant.
The equation of the expansion and contraction of a gas-bubble

�22� is as follows:

R̄� �2R̄

�t2 +
�vg

�t

�R̄

�z
+ 2vg

�2R̄

�t�z
+ vg

�vg

�z

�R̄

�z
+ vg

2�2R̄

�z2 �
+

3

2
� �R̄

�t
+ vg

�R̄

�z
�2

=
1

�l
�pg − pl −

2�l

R̄
−

4�l

R̄
� �R̄

�t
+ vg

�R̄

�z
�� �8�

where pressure pl in Eqs. �3� and �8� includes the effect of the
two-phase magnetic body force FmT which will be appear in Eq.
�17� in the next section. Therefore, the gas-phase equations im-
plicitly include the effect of two-phase magnetic body force.

The mass conservation equation for single gas bubble �22� is

4

3
�� �

�t
��gR̄3� + vg

�

�z
��gR̄3�� =

�

�t�	 �g

	 Ng

� + vg
�

�z�	 �g

	 Ng

�
�9�

where Ng is the number density of the generated vapor bubbles.
Maxwell’s equation in two-phase flow �1� is

� · BT = 0

� � HT = 0

BT = �0�HT + MT� �10�

where B is the vector of magnetic flux density, H is the vector of
magnetic field, and M is the vector of magnetization. The sub-
script T denotes two-phase flow. BT, HT, and MT are defined by
following expressions:

BT = �Bg + �1 − ��Bl

HT = �Hg + �1 − ��Hl

MT = �1 − ��Ml �11�

where in the two-phase flow state, we applied the simplest as-
sumption on M, namely, that the magnetization in the two-phase
flow MT is only influenced by the liquid-phase volume fraction
�1−�� because magnitude of the magnetization or magnetic sus-
ceptibility in gas-phase is much smaller than that in the liquid-
phase.

2.2 Method for Linear Stability Analysis. Figure 2 sche-
matically shows that the system used in the theoretical analysis
referring to the experimental system in the next section. The
present analysis extends an analytical method developed by
Anderson and Jackson �14� for nonmagnetized fluidized beds and
that by Rosensweig �1,2� for magnetized fluidized beds. For the
sake of simplicity, regarding the analyzed system, it is assumed
that the direction of the mainstream is upward, opposite the gravi-
tational force. A disturbance wave propagates through the system
in the specified direction by its wave vector k, which is oriented at
an angle 	2 relative to the direction of flow. A nonuniform applied
magnetic field H is imposed on the system at an arbitrary orien-
tation, specified by angle 	1 relative to the direction of wave
propagation. e�H�, e�u�, and e�k� are the unit vectors in the direction
of magnetic, stream, and wave number, respectively. Unknown
variables in the basic equations are written as the sum of the value
in the equilibrium state and a small perturbation, and they are
derived as follows:

Fig. 2 Schematic of theoretical system „analytical model and
nomenclature for stability analysis…
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� = ��0� + �̃, pl = pl

�0� + p̃l

pg = pg
�0� + p̃g, vl = vl

�0� + ṽl

vg = vg
�0� + ṽg, Tl = Tl

�0� + T̃l

Tg = Tg
�0� + T̃g, �g = �g

�0� + �̃g

HT = HT
�0� + H̃T = e�H�HT

�0� + H̃T

MT = MT
�0� + M̃T = e�H�MT

�0� + M̃T

� �12�

where superscripts �0� and ˜ denote the equilibrium state and per-
turbation from the equilibrium state, respectively. The variables,
including the small perturbation, are substituted into the basic
Eqs. �1�–�11�. The basic equations are linearized by neglecting the
terms of greater than second order in small perturbation. In this
manner, a set of linear partial differential equations for the pertur-
bation is obtained. Next, the void fraction perturbation and the
magnetic field perturbation are assumed to be represented by the
plane wave solution which is derived as follows:


�̃ = �̂̃W

H̃T = H̃
ˆ

TW
� �13�

where

W = exp�
ct�exp�ik · x� �14�

with �̂̃ being the amplitude of the void fraction perturbation, H̃
ˆ

is
the constant vector of the magnetic field, k is the wave number
vector of the plane wave disturbance, and x is the position vector.

c denotes the complex frequency and is defined as


c = 
r − i
i �15�

where the real part 
r of 
c determines the rate of growth or
decay of the wave with time. If 
r is positive, the disturbance
grows and the flow state is unstable, whereas if 
r is negative, the
disturbance decays and the flow state is stable. Thus, 
r is termed
the growth factor. Next, in order to linearize the magnetic body
force term considering the effect of nonuniform magnetic field,
the magnetic field distribution HT is derived as the following
equation. In introducing HT, we referred to the analytical solution
of the magnetic field distribution of a Helmholtz coil �23� and the
measurement results of magnetic field of the electromagnet used
in the present experimental study,


HT = �HT
�0� + H̃T�C�H� = �HT

�0� + H̃T · e�H��C�H�

C�H� = exp− �a�H�� z + b�H�

D
��2�

HT
�0� � Hmax

�
a�H� = 0.1389 �in the axial magnetic field�

0.370 �in the transverse magnetic field� �
b�H� = 0.021 �in the axial magnetic field�

0 �in the transverse magnetic field� � �16�

where a�H� and b�H� in �16� are the empirical coefficients con-
cerned with the magnetic field profiles of the electromagnet and
the relative position between maximum field strength and heating
area in the present experimental apparatus. According to Eq. �16�
and linearized Maxwell’s equations, the linearized magnetic body
force term in two-phase flow, taking into account the effects of
nonuniform magnetic field, is derived as the following equation:

FmT = �0MT · �HT = �0�1 − ��0��Ml
�0��HT

�0� � C�H�

+ C�M�C�H�Ml
�0� � �̃ + C�M�Ml

�0��̃ � C�H�� �17�

where �0 is the permeability in a vacuum, C�M� is defined as

C�M� =
cos2 	1

1 + �1 − ��0���1 − cos2 	1���0� + �̂�1 − ��0��cos2 	1

�18�

and 	1 is defined as

	1 = cos−1�e�H� · e�k�� �19�

where e�H� and e�k� are the unit vector in the direction of H and k,
respectively. The tangent susceptibility �̂ and chord susceptibility
��0� are defined as

�̂ = � �Ml
�0�

�HT
�

HT
�0�

��0� =
M�0�

HT
�0� �20�

It is now possible to formulate a partial-differential equation in
the void fraction perturbation �̃. Equation �17� is substituted into
the linearized equation of motion, and the divergence of the lin-
earized basic equations are computed. After this analysis, by
eliminating the unknown perturbation values except for �̃, the
partial-differential equation in the void fraction perturbation �̃ is
derived as

A1
�2�̃

�t2 + C1
��̃

�z
+ D1

��̃

�t
+ �E1 + F1�

�2�̃

�z2 = 0 �21�

where the coefficients A1, C1, D1, E1, and F1 do not directly
include the perturbation values and are expressed as follows:

A1 =
�g

�0�

�l
+ 1 −

�g
�0�vg

�0�

�l
�22�

C1 =
g

��0�Ccof �23�

Ccof = − ��0� +
�g

�l
�vg

�0�

g
+

��0�vl
�0�

�1 − ��0��g� −
32�g��0�vl

�0�

�lgD2�1 − ��0��

+
3CD�

4�R̄�0�
��vg

�0�

g
+

��0�vl
�0�

�1 − ��0��g
��vg

�0� − vl
�0��� + cm1

+ c��l

�l
�−

�g

�g
�0�g

+
2��0�vg

�0�

�g
�0�g

cR +
��0��l

�1 − ��0���l
�

+
32

�lD
2��g��0�2

g
� �g

�g
�0���0� −

2vg
�0�

�g
�0� cR� +

�l�
�0��l

�lg
�

−
3CD���0�

4�R̄�0�g
�� �g

�g
�0���0� −

2vg
�0�

�g
�0� cR��vg

�0� − vl
�0��

−
vg

�0���0��l

�1 − ��0���l
� −

��0�

�l
cR −

3��0�CD

4R̄�0�2
g

�vg
�0�2

− 2vg
�0�vl

�0� + vl
�0�2

�� �R̄
˜

�z
�

z=zl

−
3CVM��0�

R̄�0�g
�vg

�0�2
− vl

�0�vg
�0��� �2R̄

˜

�z2
�

z=zl

+ cm2� �24�

c� = 1�� �g

2�g
�0�vg

�0� −
��0�

�g
�0� � ��̃g

�z
�

z=zl

� �25�
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cR =
3

4�R̄�0�3

�

�z��	 �g

	 Ng

��
z=zl

− � 3�g
�0�

R̄�0�

�R̄
˜

�z
�

z=zl

�26�

cm1 = −
��0�

�lg
�0�1 − ��0��C�M�Ml

�0�2�C�H�

�z
�27�

cm2 = −
��0�

�lg
��0�1 − ��0��Ml

�0�HT
�0��

2C�H�

�z2 + �0�1

− ��0��
�2C�H�

�z2 C�M�C�Ml
�0�2� �28�

D1 =
�gg

�lūg
�0��vg

�0�

g
+

��0�vl
�0�

�1 − ��0��g� +
32��0�vg

�0�

D2�lg
�− �g +

�gvg
�0�

1 − ��0� + �l�
+

3CD�

4�R̄�0�
��vg

�0� − vl
�0���vg

�0�

g
+

��0�vg
�0�

�1 − ��0��g
�� �29�

E1 = −
�g

�0�vg
�0�3

�l
+

4�g
�0�vg

�0�2

�l�
�0� + 2vl

�0�2� 1

��0� +
��0�

1 − ��0��
+ 2CVM�vg

�0�2

��0� +
vl

�0�2

1 − ��0�� �30�

F1 = − �0C�M��1 − ��0��
Ml

�0�2

�l
C�H� �31�

where zl denotes the distance from the position of z=0 where the
boiling starts and vapor bubbles initially appear. ūg

�0� denotes the
superficial gas-phase velocity and is expressed by

ūg
�0� = ��0�vg

�0� �32�
Focusing on the second order space differential term in Eq.

�21�, the linearized two-phase magnetic body force term F1 is
included in this differential term. Thus, the two-phase magnetic
body force enhances the diffusion effect of the void waves.

Substituting the plane-wave expression of Eq. �13� for �̃ into
Eq. �17� and assuming �̃�0 results in the following complex
quadratic algebraic equation for 
c,

�̂̃�A2
c
2 + D2
c + �E2 + F2 + iB2D2C2�� = 0 �33�

where

A2 =
��0�

1 − ��0�A1

B2 = k cos�	1�
g

1 − ��0� ·
1

D2

C2 = Ccof

D2 =
��0�

1 − ��0�D1

E2 = e2 · k2

e2 = −
��0�

1 − ��0�E1

F2 = �0C�M�
��0�

�l
Ml

�0�2
C�H� · k2 �34�

where 	2 is the angle between the direction of flow and the wave
vector k, as indicated in Fig. 1, and defined as

	2 = cos−1�e�u� · e�k�� �35�

In Eq. �33�, A2, C2, and D2 depend on the properties of the un-
perturbed system, whereas B2, E2, and F2 depend on the magni-
tude of the wave vector k.

Equation �33� is quadratic in 
c, and hence the real and imagi-
nary parts of its roots can be readily obtained. Accordingly, Eq.
�33� is expressed as

�G1
c + 1�2 = 1 − G2 − iG3 �36�
where

G1 =
2A2

D2

G2 =
4A2�E2 + F2�

D2
2

G3 =
4A2B2C2

D2
�37�

The real and imaginary parts of the two roots of Eq. �36� can now
be obtained with the use of complex-variable algebra and are de-
rived as


r =
1

G1
�− 1 ±�w1 + �1 − G2�

2
� �38�


i = ±
1

G1

�w1 − �1 − G2�
2

�39�

w1 = ��1 − G2�2 + G3
2�1/2 �40�

In Eq. �38�, the choice of the negative sign before the radical
corresponds to waves that decay and hence need not be further
considered here. Magnetic stabilization is achieved if 
r0 and
neutral stability is achieved when 
r=0. Choosing a positive sign
before the radical in Eq. �38�, the condition of stable flow state is
derived as

G2 �
1

4
G3

2 �41�

Substituting G2 and G3 into Eq. �41� and then A2, C2, B2, E2,
e2, and F2 in the resulting expression gives the following criterion
of stability. The stability criterion describes a transition from the
stabilized flow state to an unstable flow state. The criterion is
given in terms of two dimensionless parameters:

Nm · Nv
�1 �unstable�
=1 �neutrally stable�
1 �stable�

� �42�

where Nm represents the ratio of kinetic energy to magnetic energy
of the two-phase magnetic fluid and Nv is the modulus of void
fraction which includes the effect of the tangent and chord sus-
ceptibility �̂ and ��0�, respectively. They are defined as

Nm =
�lūg

�0�2

�0Mz
�0�2 �43�

Nv = � 1

16
�4A2C2

D2
�2� ūg

�0�

��0��2 g2

�1 − ��0��ūg
�0�4

A1C�H�

−
e2

��0�ūg
�0�2

C�H�
�

� �1 + �1 − ��0����0� − �1 − ��0�����0� − �̂�cos2�	2

− 	3��
cos2 	2

cos2�	2 − 	3�
�44�

where 	3=	2−	1 is the angle between the direction of the flow
and the applied field. If 	2−	3=� /2, namely, if the wave is per-
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pendicular to the magnetic field and 	2�� /2, namely, the wave is
other than transverse to the flow, Nv is infinite and thus stabiliza-
tion of the two-phase flow is impossible. Since disturbance waves
of all orientations can be present, an oblique field cannot stabilize
the two-phase flow. Thus, stabilization is achieved when the ap-
plied magnetic field is axial �	3=0�. When the field is axially
oriented �	3=0� and ��0���̂, Nv is greatest when 	2=� /2, and Nv
decreases with 	2 to 0. Here, we assumed that 	1=	2=0, namely,
both applied magnetic field and disturbance waves are in the axial
direction and also in parallel to the flow direction because such
condition is most suitable for stabilization of two-phase flow. Sub-
stituting of 	1=	2=0 into Eq. �44�, the following equation is ob-
tained:

Nv = � 1

16
�4A2C2

D2
�2� ūg

�0�

��0��2 g2

�1 − ��0��ūg
�0�4

A1C�H�

−
e2

��0�ūg
�0�2

C�H�
�

� �1 + �1 − ��0���̂� �45�

Next, we derive the superficial gas-phase velocity in the equilib-
rium state ūg

�m� for a representative value, taking into account the
dependence of the magnetic field on the superficial gas-phase ve-
locity ūg

�0�. Here, we assume that the system is in an uniform
equilibrium state, and thus unknown variables in Eq. �2� and Eq.
�3� are expressed as

� = ��0� pl = pl
�0� pg = pg

�0� R̄ = R̄�0�

vl = vl
�0� vg = vg

�0� �g = �g
�0�

H = HT
�0� = e�H�HT

�0�

M = MT
�0� = e�H�MT

�0� �46�

where by substituting these values into Eqs. �2� and �3�, and ad-
ditionally by eliminating the pressure gradient terms, the initial
equilibrium gas-phase velocity vg

�m� is derived as the following
equations:

vg
�m� =

− L2 + �L2
2 − 4L1L3

2L1

L1 =
3�lCD

8R̄�0�

L2 = �g −
3�lCDvl

�0�

4R̄�0�
−

32�g��m�

D2

L3 = �g
�0�g −

3�lCDvl
�0�2

8R̄�0�
− �1 − ��m���lg − �gvl

�0�

−
32�l�1 − ��m��vl

�0�

D2 �47�

where ��m� denotes the void fraction in the initial equilibrium
state. The expression for vg

�0� is derived by changing ��m� to ��0� in
Eq. �47�. Also, the superficial gas-phase velocity ūg

�m� in an initial
equilibrium state is defined as ūg

�m�=��m�vg
�m�, and the normalized

superficial gas-phase velocity ūg
* is derived as

ūg
* =

ūg
�0�

ūg
�m� =

��0�vg
�0�

��m�vg
�m� �48�

The expression for Nv of Eq. �45� combined with the neutral
stability criterion NmNv=1 of Eq. �42� and the definition of Nm

from Eq. �43� give the normalized magnetization parameter Mnp
*

which appears as the abscissa in Fig. 2,

Mnp
* =��0Ml

�0�2

�lūg
�m�2 �1/2

= Nv
1/2

ūg
�0�

ūg
�m� �49�

Next, we investigate the theoretical prediction regarding the
effect of a magnetic field on the dispersion relation of the void
waves in the stable and unstable regions of the system. To accom-
plish this task in a general way, the following expressions are
substituted into the Eq. �38� of growth factor 
r:



G2 = � k

g/��*ūg
�0�2

�
�2

·
1

NmNv

G3 =
2k

g/��*ūg
�0�2

�

�* =
2C2 cos 	2

��0�

� �50�

As a result, the equation of dispersion relation, including the ef-
fect of NmNv for void waves, is derived as


r =
1

G1
− 1 ±

1
�2���1 − � k

g/�*ūg
�0�2�2

·
1

NmNv
�2

+ 4� k

g/�*ūg
�0�2�2�1/2

+ �1 − � k

g/�*ūg
�0�2�2

·
1

NmNv
��1/2�

�51�

In Eq. �39�, the imaginary part 
i of 
c determines the phase
velocity Vp of the void waves which represents the propagation
velocity of the waves and is derived as

Vp =

i

�k�
�52�

By combination of Eqs. �39�, �50�, and �52�, the normalized phase
velocity Vp

* is derived as

Vp
* =

Vp

ūg
�0� =

�*

2�2k*��1 −
k*2

NmNv
�2

+ 4k*2�1/2

− �1 −
k*2

NmNv
��1/2

�53�

where k* denotes the normalized wave number and is defined as

k* =
k

g/��*ūg
�0�2

�
�54�

Taking into account the above-mentioned theoretical analysis, it
is now possible to precisely investigate the effect of the magnetic
field on the stability and dispersion relation of the void waves in
the boiling two-phase flow of magnetic fluid.

2.3 Conditions for Analysis. To construct the numerical con-
ditions, we refer to the present experimental study on the boiling
two-phase flow condition of magnetic fluid which will be pre-
sented in the next section. Furthermore, the physical conditions
used in the theoretical analysis are the same as those of the ex-
perimental study. As a practical example, we use the fluid proper-
ties of hexane-based temperature sensitive magnetic fluid with
manganese-zinc ferrite particles of 50 weight concentration. The
conditions for analysis are summarized in Table 1.

3 Experimental Study
To confirm the validity of the analytical results and to obtain

fundamental data for performance evaluation which can be ap-
plied to actual two-phase systems, the experimental study on the
stability of boiling two-phase pipe flow of magnetic fluid under an
axial and a transverse nonuniform magnetic fields is conducted
with a flow apparatus. The experimental apparatus is constructed
as a test loop as shown in Fig. 3. This is composed of a loop tube,
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the inner diameter D and the total length lt of which are D
=8.0 mm and lt=3.3 m, respectively. The pipe is filled with
hexane-based temperature sensitive magnetic fluid with
manganese-zinc ferrite particles. The low evaporation temperature
of hexane is suitable for use as working fluid in an energy con-
version system using boiling two-phase flow of magnetic fluid.

It is possible to measure the distribution of the liquid-phase
pressure as well as the temperature and the mean velocity of the
flow by using this apparatus. The liquid-phase pressure differ-
ences are measured using semiconductor-type pressure difference
transducers �2� and �3�. The effect of magnetic field on the un-
steady pressure fluctuation along the z coordinate being measured
by pressure difference transducers �2�. The absolute pressure is

measured with a semiconductor-type pressure transducer �8�. The
measured signals are stored and averaged in a data logger �11�
controlled by a computer �10� through a GPIB interface. The flow
rate is automatically controlled by a needle valve �23� and a pump
�24�, and measured by a the venturi tube �13�. Also, the total
measurement is conducted during the steady flow state. The dis-
tributions of the liquid-phase pressure, temperature and the mean
velocity are measured along the axial direction of the pipe. Fur-
thermore, the ultrasonic wave echo system �16� and �17� with a
video tape recorder �18� and image processor �19� is applied to
measure the superficial gas-phase velocity and void fraction in
two-phase magnetic fluid flow. The ultrasonic wave probe �16� is
closely attached to the flow pipe with a gel pad. The ultrasonic
wave echo visualizes unsteady behavior of the gas phase in the
magnetic fluid.

The magnetic fluid is heated with constant heat flux passing
through the point of maximum magnetic field strength in the
downstream region by applying a YAG laser �20� to produce a
boiling two-phase flow. Clockwise circulation flow is induced in
the loop by the buoyancy force and the nonequilibrium magnetic
driving force in the two-phase flow. The nonequilibrium magnetic
force is based on the decrease of apparent magnetization due to
the vapor bubbles production with an increase of the void fraction
� and the temperature increase. After the generated vapor bubbles
are condensed by the heat exchanger �4� and �5�, the flow be-
comes single-phase again. Here, the YAG laser system �21� with a
wave length of 1064 nm, a beam diameter of 4 mm, and a maxi-
mum power of 50 W is used to heat the magnetic fluid.

The nonuniform axial magnetic field is applied to magnetic
fluid by the electromagnet �14� with dc power supply �15�. Fur-
thermore, for another experimental case, the transverse magnetic
field is applied by a permanent magnet for comparison with the
case of the axial magnetic field. The flow pipe is made of quartz
glass to prevent absorption of the laser power. The shapes of the
vapor bubbles on the free surface before they flow into the heat
exchanger are captured by a CCD camera �25� and the contour of
bubbles are specified by using an image processor �26�.

The measurement conditions are the same as those for theoret-
ical analysis previously summarized in Table 1.

4 Results and Discussion
Figure 4 shows a stability diagram for the dependence of the

normalized superficial gas-phase velocity ūg
* on the normalized

magnetization parameter Mnp
* of the fluid. In this figure, the curve

of Nm /Nv=1 represents the neutral stability line which separates
the state of unstable flow from the region of the stable two-phase
flow. Additionally, zl

* denotes the non-dimensional parameter
which is defined as

zl
* = zl/D �55�

where zl denotes the distance from the position of z=0 as we have
previously mentioned. The horizontal line ūg

*=1 represents the
theoretical equilibrium solution for the initial boiling condition. ūg

*

Table 1 Numerical and experimental conditions

Pressure in the equilibrium state pl
�0� 112.8 kPa

Equivalent bubble radius R̄ 0.4 mm

Gas constant R 96.5 J/�kg K�
Temperature in the equilibrium state Tg

�0�=Tl
�0� 283 K

Velocity in the equilibrium state vl
�0� 0.01 m/s

Heat input per unit volume Qw 6.7�107 W/m3

Void fraction in the initial equilibrium state ��m� 0.0013
Liquid-phase density �l

1386 kg/m3

Gas-phase density in the equilibrium state �g
�0� 1.205 kg/m3

Surface tension �l
0.0213 N/m

Fig. 3 Schematic of total experimental apparatus
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is obtained by applying ��0�=��m� in Eq. �48�. A stabilized regime
exists in the inner portion of the shaded region between the line of
the initial boiling condition and the curve of ūg

*. It is found that the
stabilized regime increases with the normalized magnetization pa-
rameter Mnp

* . Also the regime increases as zl
* approaches the re-

gion where the magnetic field strength is great �zl
*→0� due to the

effect of the magnetization of the fluid. Namely, the extension of
the stable region is caused by �1� the increase of the effect of
magnetization of the fluid, and �2� the approach of the magneti-
zation to saturation magnetization with a decrease in magnetic
susceptibility �̃ due to the strong magnetic field. In Eq. �21�, the
linearized two-phase magnetic body force term F1 is included in
the second order space differential term. Therefore, it may be
reasonable to say that magnetic stabilization is obtained because
the two-phase magnetic body force enhances the diffusion effect
of void waves. According to this result, the stabilization of two-
phase flow is obtained by practical use of the magnetic body force
acting on the fluid and by applying an appropriate superficial gas-
phase velocity.

Figure 5 shows the effect of the wave number k on the growth
factor 
r of the wave for different NmNv, namely, the dispersion
relation of the void waves. In the case of NmNv1, in which the
effect of magnetization is stronger, it is found that the flow state
easily becomes more stable state with the longer wavelength of
disturbances �with the smaller wave number of disturbance�. The
shortest wavelength �largest wave number� disturbances reach an
asymptotic growth rate that is constant at a given value of NmNv.
The negative values of 
r show that the system exhibits a stable
state for the wave mode because the wave decays with time. The
curve of NmNv=� represents the universal instability of nonmag-
netized two-phase flow, and as a result, the growth rate of the
wave is independent of the magnitude of the disturbance when
NmNv=�.

Figure 6 shows the effect of the normalized wave number k* on
the normalized phase velocity Vp

*�=Vp / ūg
�0�� for different NmNv. In

the case of NmNv1 of the stable flow state, it is found that the
wave propagation speed Vp is much faster than the superficial
gas-phase velocity ūg

�0�. Also, the phase velocity increases with the
effect of magnetic field, indicating that the faster decaying mode
propagates more rapidly through the two-phase flow.

Figure 7 shows an application of the stability diagram to the
experimental data. The experimental data are measured at the
point where the production rate of the vapor bubbles is maximum.
To obtain the superficial gas-phase velocity ūg

�0�, the gas-phase
velocity and the void fraction are measured by flow visualization
measurement using the ultrasonic wave echo system with image
processing. Especially, as in the case of stronger magnetic field,
the measurement points shift to the region where the flow state is
more stable. The tendency of measurement results are in reason-
able agreement with the analytical results.

Figure 8 shows the effect of the axial magnetic field on the
unsteady pressure fluctuation along the z coordinate. The pressure
fluctuation is expressed by the nondimensional unsteady value
�PlT�fl�

* , which is defined as

�PlT�fl�
* =

�plT − �plT�av�

�plT�av�
�56�

where �plT is the cross-sectional mean effective driving pressure
from which the influence on the prudence of the liquid-phase fluid
can be deducted. �plT�av� denotes the average value of the pres-
sure difference in the sequence of data sampling time. The nor-
malized pressure fluctuation �PlT�fl�

* decreases with the increase in

the maximum magnetic field strength Hmax. The magnitude of
�PlT�fl�

* is further suppressed when approaching a stronger mag-

netic field region �zl
*→0� due to the strong effect of magnetic

Fig. 4 Stability diagram for the dependence of the normalized
superficial gas-phase velocity on the normalized magnetization
parameter

Fig. 5 Effect of wave number on growth factor

Fig. 6 Effect of normalized wave number on normalized phase
velocity

Fig. 7 Application of stability diagram to experimental data
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body force. As a result, the two-phase flow state can be stabilized
due to the magnetic body force.

Figure 9 shows the effect of the direction of the magnetic field
on the unsteady pressure fluctuation �PlT�fl�

* . It is found that the
magnitude of the pressure fluctuation in the nonmagnetic field is
suppressed by either the axial or the transverse magnetic field.
However, the magnitude of �PlT�fl�

* in the axial field exhibits a
smaller value than that in the transverse magnetic field. As a re-
sult, the axial magnetic field is more effective for stabilization of
the two-phase magnetic fluid flow than of the transverse magnetic
field. This tendency of the measurement results is in reasonable
agreement with the analytical results.

Figure 10 shows the effect of the axial magnetic field on the
aspects of the cross section of the vapor bubbles on the free sur-
face of the upper reservoir �1� in the experimental apparatus �in
Fig. 3�. The bubbles are in the process of condensation. The white
circles and the black background denote the cross-sectional areas
of the bubbles and the magnetic fluid, respectively. The diameter
of a vapor bubble and its cross-sectional area decrease with an
increase in the magnetic field strength. According to this result, it
is clarified that the vapor bubbles become minute and that the
two-phase flow state is homogenized by the magnetic force. Fur-
thermore, focusing on the direction of the magnetic field under

almost the same maximum magnetic field strength conditions
�Hmax=115.3 kA/m, in the axial magnetic field; and Hmax
=97.2 kA/m, in the transverse magnetic field�, it is found the
bubble diameter in the case of the axial field becomes smaller than
that in the case of the transverse field. According to this result, it
is clarified that the axial magnetic field is more capable of dimin-
ishing the size of the generated vapor bubbles than in the trans-
verse field. Therefore, the axial magnetic field is effective for
homogenization of the boiling two-phase flow with magnetization
of the fluid.

5 Conclusions

1. According to analytical study on void waves, it was found
that stabilization of two-phase flow can be obtained by prac-
tical use of the magnetic body force acting on the fluid and
by applying an appropriate superficial gas-phase velocity.
Furthermore, it was found that magnetic stabilization is ob-
tained because the two-phase magnetic body force enhances
the diffusion effect of the void waves.

2. It was experimentally clarified that the two-phase flow state
can be stabilized and homogenized by practical use of the
magnetization of the fluid and that vapor bubbles can be
minutely produced by effective use of the magnetic body
force. Furthermore, the measurement results were found to
reasonably agree with the analytical results.

3. It was both experimentally and theoretically clarified that the
axial magnetic field is more effective than the transverse
magnetic field for stabilization and homogenization of the
two-phase magnetic fluid flow.
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Nomenclature
a�i� � interfacial area concentration

B � strength of magnetic flux
B � magnetic flux vector

CD � drag coefficient
CVM � virtual mass coefficient

cp � specific heat
D � inner diameter of flow pipe
e � unit vector
g � gravitational acceleration

Fig. 8 Effect of axial magnetic field on unsteady pressure
fluctuation

Fig. 9 Effect of the direction of magnetic field on unsteady
pressure fluctuation

Fig. 10 Effect of magnetic field on the cross-sectional area of
a vapor bubble on the free surface
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H � strength of magnetic field
H � vector of magnetic field
h � enthalpy
i � imaginary unit
k � wave number
k � wave number vector

l1 , l2 � length of flow pipe
M � strength of magnetization
M � vector of magnetization
Ng � number density of bubbles

p � absolute pressure
q � heat flux

R̄ � mean bubble radius
R � gas constant
T � absolute temperature
t � time
v � velocity
z � axial coordinate
� � void fraction
� � phase generation density
� � surface tension
� � dynamic viscosity

�0 � permeability in vacuum
� � density


c � complex angular frequency

Subscripts
� �g � gas-phase
� �in � inlet of applied magnetic field region
� �l � liquid-phase

� �max � maximum value
� �T � two-phase flow
� �z � component in the z-direction
� �0 � position for boiling starts �z=0�

Superscripts
� ��i� � interface

� ��m� � initial equilibrium state

� �˜ � perturbation
� ��0� � equilibrium state
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Measurement of the Total Energy
Release Rate for Cracks in PZT
Under Combined Mechanical and
Electrical Loading
Four-point-bending V-notched specimens of lead zirconate titanate (PZT) poled parallel
to the long axis are fractured under conditions of controlled crack growth in a custom-
made device. In addition to the mechanical loading electric fields, up to 500 V/mm are
applied parallel and anti-parallel to the poling direction, i.e., perpendicular to the crack
surface. To determine the different contributions to the total energy release rate, the
mechanical and the piezoelectric compliance, as well as the electrical capacitance of the
sample, are recorded continuously using small signal modulation/demodulation tech-
niques. This allows for the calculation of the mechanical, the piezoelectric, and the
electrical part of the total energy release rate due to linear processes. The sum of these
linear contributions during controlled crack growth is attributed to the intrinsic tough-
ness of the material. The nonlinear part of the total energy release rate is mostly asso-
ciated to domain switching leading to a switching zone around the crack tip. The mea-
sured force-displacement curve, together with the modulation technique, enables us to
determine this mechanical nonlinear contribution to the overall toughness of PZT. The
intrinsic material toughness is only slightly dependent on the applied electric field (10%
effect), which can be explained by screening charges or electrical breakdown in the crack
interior. The part of the toughness due to inelastic processes increases from negative to
positive electric fields by up to 100%. For the corresponding nonlinear electric energy
change during crack growth, only a rough estimate is performed.
�DOI: 10.1115/1.2744027�

Keywords: PZT, piezoelectric, fracture criterion, compliance, energy release rate

1 Introduction
Piezoelectric ceramics are commonly used as sensors and ac-

tuators in versatile, technical fields, such as the automotive indus-
try, medical technology, metrology, and sonar applications �1�. In
this context, the reliability is of particular importance, as such
ceramics are susceptible to brittle fracture �2�. Because of their
piezoelectric properties, in most applications these ceramics are
used under combined mechanical and electrical loads. A large
number of theoretical papers have been published concerning the
influence of electric fields on cracks in piezoelectric materials
�3–7�. Most approaches predict strong effects in retarding crack
growth when an electric field is applied perpendicular to a non-
conducting crack. On the other hand, experimental work has
shown that the theoretically predicted effects are greatly overesti-
mated and even partially contradictory to the experimental results.
It seems evident that the fracture toughness in poled ferroelectric
ceramics is larger for crack growth parallel to the polarization
direction than perpendicular to it, which is related to ferroelastic
domain switching. Moreover, concerning the influence of an ad-
ditional electric field, different effects were reported that have not
lead to a consistent understanding until now �8–13�. However, the
evaluation of these experiments is difficult because of the nonlin-
ear ferroic behavior, and also appropriate assumptions of the elec-
trical boundary conditions of the crack are necessary to describe
fracture in piezoelectric materials. The theoretical description of

nonconducting cracks is often based on the assumption of com-
plete impermeability. This is a major simplification, because elec-
trical discharge and crack geometry effects such as bridging and
branching elevates the permittivity interior to the crack signifi-
cantly, as found by Schneider et al. �14�. Hence, finding an ad-
equate fracture criterion that takes both mechanical and electrical
loads into account is still one of the most challenging issues.

A critical value of the total energy release rate is used for one of
the potential fracture criteria, as it is based on thermodynamic
considerations �6,7�. Thus, a crack will start to propagate when a
critical value Gc is reached, which is related to the surface energy
of the material and the energy dissipation in the process zone. In
several theoretical papers, the total, as well as the crack tip energy
release rate, has been calculated for different geometries and un-
der different assumptions regarding the electrical boundary condi-
tions �3,5,7,8,15–17�. However, there is still a lack of experimen-
tal data to evaluate the theoretical predictions. Beside preliminary
results by ourselves �18�, no experimental approach has been pub-
lished that directly enables simultaneous measurement of all sub-
stantial contributions to the total energy release rate directly from
macroscopic properties without assuming specific electrical
boundary conditions of the crack.

Against this background, a four-point-bending experiment with
poled PZT specimen is performed under mechanical loads and
applied electric fields from −500 to +500 V/mm, i.e., anti-parallel
and parallel to the poling direction, respectively. As will be de-
scribed in Sec. 3, the experimental setup used enables simulta-
neous in situ determination of the three linear components of the
total energy release rate, i.e., the mechanical, the electric, and the
piezoelectric part, as a function of the crack length and for differ-
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ent applied electric fields. Concerning the mechanical energies,
the linear elastic and nonlinear contributions to the energy release
rate were separated experimentally.

2 Theoretical Basis
In the following, the theoretical framework used to determine

the energy release rate and the toughness is described. We apply
Griffith’s energy balance to our PZT material, which is ferroelec-
tric and ferroelastic. This means that if a combination of stress and
electric field is inside the switching surface, the material behaves
completely linearly piezoelectric. If the electric field and mechani-
cal stress are outside this region, domain switching takes place
that leads to a change of the remanent polarization and remanent
strain in these volumes. As will be seen in the following, it is not
necessary for this investigation to know the switching criteria and
constitutive equations in order to evaluate the energy changes in
the PZT ceramic. We mainly use the experimentally determined
linear part of the potential energy � �3�:

d� = − �dF − QdV − GdA �1�

Here, A is the crack surface area and �, F, Q, and V are displace-
ment, force, charge, and voltage, respectively. In the following
“linear part of the energy” or “linear energy release rate,” respec-
tively, means that the energy contributions, being partly quadratic
in F or V, are attributed to the “linear” part of the constitutive
equations. Equation �1� defines G as the crack driving force or
energy release rate. Since the investigated PZT ceramic is ferro-
electric and ferroelastic, the displacement � has a linear elastic
part �l and a remanent part �r coming from the ferroelastic state
and including inelastic as well as residual elastic deformation:

� = �l + �r �2�

Similarly, we have linear dielectric behavior leading to charges Ql
and remanent polarizations leading to charges Qr:

Q = Ql + Qr �3�
By using the linear terms of Eqs. �2� and �3�, we get the linear part
of d�:

d�l = − �ldF − QldV − GldA �4�

In the case of stable steady state crack growth, a fracture criterion
can be formulated, where Gl reaches the critical value Glc. �The
subscript “c” means “critical.”� Sakai and Bradt �19� gave differ-
ent methods for separating the energies due to linear and nonlinear
processes during crack advance. We use one of them to evaluate
our experimental data. They also stated that the change in energy
due to linear processes during crack advance can be associated
with the breaking of the atomic bonds, meaning the intrinsic part
Gc

intr of the toughness. Using this assumption and generalizing it
tentatively on the piezoelectric case, we obtain directly from Eq.
�4� with F and V being constant:

Gc
intr = Glc = 2�s = − � ��l

�A
�

F,V

c

�5�

with �s being the effective surface energy. Strictly speaking, the
assumption that the linear processes correspond to the intrinsic
toughness has not been proven, but it seems reasonable and there-
fore it is used here. The domain switching area also contains elas-
tic residual stresses, which can influence the intrinsic energy re-
lease rate; these stresses, in principle, would not be measured with
our compliance method, described below. On the other hand, the
specimen compliance is dependent only on the crack length �as-
suming a constant elastic modulus, see further below� and is not
dependent on how much the crack advance is influenced by re-
sidual stresses. The energy from residual stresses would be newly
created during crack growth. The difference between this created
energy and the amount contributing to crack advance remains as
residual stress energy in the crack wake. It contributes to the over-

all toughness and would be constant along the crack in the case of
steady state crack growth. Thus, it is necessary to assume steady
state conditions. This issue has been addressed before by Rose and
Swain �20�.

In the process zone, the remanent polarization and the remanent
strain change because of the high stress and electric field. Thus,
beside Gc

intr, other processes exist, connected with domain switch-
ing, and leading to a toughness increase �Gc as well as to a
heightened overall toughness Gc. Crack propagation takes place if
the total energy release rate G becomes equal to a critical value,
i.e., G=Gc, with

Gc = Gc
intr + �Gc �6�

Here the term �Gc is not further specified. A detailed description
of the segmentation into different energy contributions for the
presence of a switching zone in ferroelectrics is given by Kreher
�21�.

The linear part of � in Eq. �1� can be expressed with the com-
pliances for linear piezoelectric materials as proposed by Suo
�22�:

�l�V,F,A� = −
1

2
Ce

FV2 −
1

2
Cm

VF2 − CpVF �7�

where Ce
F, Cm

V , and Cp are the electric capacitance, the mechanical
compliance, and the piezoelectric compliance, respectively. The
superscript “F” means constant force and “V” means constant
voltage. The electric charge Ql and the displacement �l are given
by

Ql = �− ��l/�V�A,F = Ce
FV + CpF �8�

�l = �− ��l/�F�A,V = Cm
VF + CpV �9�

The energy release rate due to the linear processes therefore is

Gl
tot = − � ��l

�A
�

F,V

= Ge
F + Gm

V + Gp �10�

where

Ge
F =

V2

2

�Ce
F

�A
�11�

Gm
V =

F2

2

�Cm
V

�A
�12�

and

Gp = FV
�Cp

�A
�13�

are the linear electric, mechanical, and piezoelectric components
of the energy release rate, respectively. From Eqs. �8� and �9� we
readily find:

Ce
F = � �Ql

�V
�

A,F

�14�

Cm
V = � ��l

�F
�

A,V

�15�

and

Cp = � �Ql

�F
�

A,V

= � ��l

�V
�

A,F

�16�

Since Cp
F=Cp

V and therefore Gp
F=Gp

V, the superscripts of Cp and
Gp are omitted. In order to determine the linear contributions to
the total energy release rate, Ce

F, Cm
V , and Cp must be measured for

different crack lengths. This enables calculating the derivatives of
the compliances with respect to the crack surface area. Hence, the
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experiment must be performed under conditions of stable crack
growth.

We are aware of the fact that the quantities Ge, Gm, and Gp are
not invariant to the transformation of the variables, as e.g., a
change from the variables F and V to the variables F and Q. But
although the different energy parts vary quantitatively, the sum of
the components, which is Gc

intr at crack growth, remains the same.
It is mentioned here that in the literature, as for example by Park
and Sun �8�, the linear release rate from the closure integral is
decomposed into a mechanical and an electrical part, representing
an invariant formulation. On the other hand, we use Eqs. �11� to
�13� because the given energy components can be measured best
in this composition. Thus e.g., the mechanical part Gm

V in this
paper differs from Gm in Ref. �8�. �The only exception is at zero
electric field, since then we have Gm

V � Gl
tot.� To avoid confusion,

we add superscript “V,” “F,”or “���” to the quantities to indicate
the given boundary conditions.

For the correct data evaluation, the capacitance needs to be
measured at constant force F, represented by Ce

F. In our experi-
mental device, which is displacement controlled, the capacitance
is measured at constant displacement �, denoted by Ce

�. From
thermodynamic considerations, the following relation can be de-
rived:

Ce
F = Ce

��1 +
CP

2

Ce
�Cm

V � �17�

Thus, we get Ce
F directly from the measured quantities. For our

bending experiment in the range of crack lengths below 2.5 mm,
the quotient in the brackets on the right-hand side of Eq. �17�, a
measure for the difference between Ce

� and Ce
F, is below 0.05%.

However, the conversion is taken into account, because Ce
F can be

calculated exactly.
In the following all energy release rates refer to the critical

state of controlled crack growth. Thus, the superscript “c” for
“critical” is not always given.

Since in our experiments the crack length is measured during
controlled crack growth, the mechanical stress intensity factor KI
can be determined. In the Griffith crack solution, with the polar-
ization vector acting perpendicular to the crack surface, KI is in-
dependent of any external electric load �3�. Fully coupled piezo-
electric finite element �FE� calculations for the given geometry,
including combined electromechanical loading, also reveal that KI
is not dependent on the electric field �23�. The corresponding
equation, taken from �23�, is:

KI = �w�akI���� �18�

with �a= �3/2��F /b��so−si� /w2 being the bending stress of an
uncracked sample loaded by the force F; so and si are the outer
and inner support distances, respectively, b the thickness, and w
the height of the specimen. Concerning KI, we get identical shape
functions kI� for the permeable and the impermeable crack:

kI� =
���

�1 − ��3/2 �1.07 − 1.89� + 2.14�2 − 0.95�3� �19�

Here, �=a /w is the normalized crack length with a being the
absolute crack length. The formula is valid for 0.05���0.95.
The shape function kI�, based on the FE calculations, is approxi-
mated by a least-squares fit �23�. We evaluate KI during stable
crack growth and denote it as KI

C in order to distinguish it from
the mechanical fracture toughness KIC.

3 Experimental Procedure

3.1 Preparation of Specimens. Commercially available mor-
photropic PZT ceramic bars �PIC151, PI-Ceramic, Lederhose,
Germany� of dimensions 3	4	28 mm3 are poled in the longi-
tudinal direction using an electric field of 1.7 kV/mm �47.5 kV�

for 15 min at room temperature. Before poling they were polished
on the long side to enable microscopic determination of the crack
extension. After poling the notch is cut with a diamond saw blade
of 120 
m thickness and sharpened with a razor blade as speci-
fied by the single edge V-notch beam method �SEVNB� �24,25�.
The notch depth is always about 1.0 mm and the tip radius around
10 
m.

3.2 Experimental Setup. Fracture experiments are performed
under conditions of stable crack growth in a four-point-bending
device. The supports used �Fraunhofer-Institut für Werkstoff-
mechanik, Freiburg, Germany� have support distances of 10 mm
and 20 mm and a roller diameter of 5 mm. Ceramic rollers are
used to achieve electrical insulation. The principal experimental
setup is given in Fig. 1.

The supports are mounted in a very rigid metal frame �Fig. 2�
as similarly done before by Fett et al. �26�. The dead weight of the
upper support is compensated by weights connected via a rotat-
able wheel, which is dynamically decoupled using a spring. A
steel plate is pre-stressed in the frame to reduce the thread slack-
ness of the main screw �1� �Fig. 2�, and thus increases the stiffness
of the device. The displacement at the load points on the sample is
changed manually using a hand wheel and a helical gear unit
�E040B, ZAE Antriebs Systeme, Hamburg, Germany�. This al-
lows a precise and instantaneous control of the displacement with
the precision of a few nanometers. The load accuracy is around
0.01 N. Due to its high stiffness, a quartz sensor �quartz dynamic
load cell 9212, Kistler Instrumente GmbH� of high sensitivity
�−11.3 pC/N� is used to measure the force. Quartz sensors exhibit
an electrical drift, which must be taken into account. Since the
overall drift is linear, this effect can be compensated.

The compliances are determined by a small modulation of the
displacement. Therefore, a thin piezo-actuator is placed in the load
line and excited by a low ac voltage of 5 Hz frequency. Simulta-
neously, the displacement of the upper supports with a modulation
amplitude of about 30 nm is measured using an inductive position
encoder �Fig. 2�. In order to apply the theory correctly, the dis-
placement is measured at the points where the mechanical load is
induced. This is at the upper support rollers, from where the dis-
placement is transferred via a movable linkage to the position
encoder. In addition, we assume that the small displacement am-
plitude of 30 nm only leads to a linear response of the PZT
sample, which is substantiated further below. It means that we
measure d�l and dQl for different crack lengths �but each mea-
surement at constant crack length�.

Optionally, the specimen can be loaded with high voltage up to
14 kV, i.e., an electric field up to 500 V/mm. In parallel, the
capacitance and the electric current are measured using custom-
made electronics �schematic diagram in �27��. The capacitance
measurement has been calibrated with different capacitors, previ-
ously characterized with a precision LCR meter �Hewlett-Packard
4284A�. Thus, an accuracy of about ±0.02 pF is determined for

Fig. 1 Schematic geometrical four-point-bending setup with
electromechanical load
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the measurement of capacitance changes. The ac signal �10 kHz,
amplitude 1.5 V� necessary for this purpose is negligible com-
pared to the applied electrical load of several kV.

According to Eq. �16�, two equivalent procedures are possible
to access the piezoelectric compliance. Varying the mechanical
load under constant voltage, the change of the charge in the
sample can be determined, i.e., Cp

V= ��Ql /�F�A,V. Another method
is to alternate the voltage under constant force, which yields a
change of the displacement, i.e., Cp

F= ���l /�V�A,F. Since the high
voltage is kept constant by the power supply, the first option can
be realized directly with the modulation technique and is used for
all measurements presented in this paper. The second option was
implemented only for test purposes. Generally, during the mea-
surement of Ce

F, Cm
V , and Cp, the crack length remains unchanged.

For the evaluation of the compliances from the modulated me-
chanical load, the amplitudes of the force �dF�, the linear dis-
placement �d�l�, and the electric current �dI� must be correlated.
Therefore the signals are recorded using a PC with a built-in AD
converter. The amplitudes are determined by fitting sine functions
to the measured data containing ten periods, which means 2 s
measuring time per data point. Actually, amplitude and phase are
fitted, whereas the frequency of 5 Hz is fixed. The evaluation
procedure is similar to the formalism used in lock-in techniques.
The compliances are calculated afterwards according to Eqs. �15�
and �16� using the amplitudes of the fitted functions. The charge
dQl necessary to calculate the piezoelectric compliance is deter-
mined by analytical integration of the sine function, which corre-
sponds to the current signal. The accuracy of the current signal is
±0.02 pA. Furthermore, KI

C at crack growth is calculated accord-
ing to Eqs. �18� and �19� using the applied load and the crack
length measured with an optical microscope �Wild M3Z� �Fig. 2�.

3.3 Measured and Derived Quantities. Since the experiment
is relatively complex, the measured and derived quantities are

listed in Table 1 as a basis for further analysis. The time t is
needed for the linear drift correction concerning the quartz sensor.
Gc

intr is derived solely from measured macroscopic quantities. The
data are recorded simultaneously so that an entire set of param-
eters for all crack lengths is acquired with a single bending bar. As
mentioned before, each measurement of dF, d�l, and dQl along
crack advance is performed at constant crack length.

The measuring technique in combination with stable crack ad-
vance in piezo ceramics is quite new. Therefore, the main steps of
the data evaluation, including the correction due to the finite com-
pliance of the four-point-bending device, and due to the compres-
sion of the sample at the contact points are summarized in the
Appendix.

Fig. 2 Schematic drawing and photograph of the displacement controlled four-point-bending device. The insertion
in the photograph shows the mechanical arrangement to measure the displacement of the upper support. The two
V-shaped rods are movably connected by an axis and transfer the displacement of the upper support rollers to the
position encoder. The electrical insulation at the high voltage side of the specimen is achieved by a coating with
thermoplastics.

Table 1 Measured and derived physical quantities. They are
used in the equations given before and determined for every
crack length. The numbers in brackets indicate the equations,
which define the quantities. The amplitudes of the sine func-
tions due to the tiny 5 Hz modulation are dF, d�l, and dQl, and
lead to Cm

V and Cp. The energy release rate Gc
mech also includes

remanent processes and is defined further in the text.

Measured Calculated �Eq.�

F Cm
V �15�

dF Cp �16�
� Ce

F �17�
d�l KI

C �18�
dQl Gm

V �12�
V Gp �13�

Ce
� Ge

F �11�
a Gc

intr �5� and �10�
t Gc

mech �27�
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4 Results and Discussion

4.1 Force-Displacement Curves and Their Interpretation.
The raw data of a representative load-displacement curve of poled
PZT without applied electric field �both electrodes of the speci-
men are connected with ground potential�, including two unload-
ing cycles, are given in Fig. 3. Already, the very first loading
before crack growth leads to a remanent displacement of 2.5 
m
after unloading. This effect is typical for all tests and for all ap-
plied electric fields. We interpret this inelastic behavior of the
sample as the creation of a frontal process zone �see also Fig. 6�.
It can be seen that the unloading and the loading lines in Fig. 3
form closed hysteresis loops, implying that irreversible processes
occur. The second unloading/loading cycle after substantial crack
propagation of 1.5 mm shows the same irreversible hysteresis
loop behavior. This is taken as switching of the ferroelastic do-
mains around the crack tip during unloading and reloading. After
a given crack advance of 1.5 mm and after complete unloading,
an additional remanent displacement of about 1.5 
m is observed.

The areas of the “unloading hysteresis loops” become two to
three times narrower if the 5 Hz modulation is not used. Obvi-
ously, the small mechanical modulation with an amplitude of
30 nm facilitates domain wall movements. But in both cases, i.e.,
with and without 5 Hz modulation, the inelastic remanent dis-
placements as well as the slopes of the dashed loading lines, es-
pecially directly after reloading at F=0 N �arrows pointing up�
are the same. In addition, the shape and the area of the main
load-displacement curve are unchanged by the 5 Hz modulation.

The measured displacement in Fig. 3 must be corrected due to
the device compliance and to the compression of the sample. For
details, see the Appendix �Fig. 18 and Eq. �A5��. The corrected
diagram of Fig. 3 is shown in Fig. 4 with all six unloading/loading
cycles. The open circles in Fig. 4 represent the places of slight
unloading, where the small signal compliance Cm

V is measured.
The slopes of the dotted lines, corresponding to 1/Cm

V , run nearly
tangentially to the unloading lines.

The loading lines are slightly curved �Fig. 4�, implying that the
specimen becomes softer with increasing force. This seems rea-
sonable because of increasing domain switching. On the other
hand, the slopes of the small signal compliance values �dotted
lines� fit well to the unloading/loading cycles when reloading
starts at F=0 N. The two arrows in Fig. 4 indicate two parallel
dotted lines representing the small signal compliance. Addition-
ally, when measuring the small signal compliance along the data
points of an unloading/loading cycle, its value is almost constant
within approximately 5% �except at forces less than about 5 N�. It
follows that the small signal compliance is independent of actual
load conditions. �Note that the modulation amplitude of about
30 nm for measuring Cm

V is less than the thickness of the dotted
lines.�

As a consequence of these results, we assume that the measured
mechanical small signal compliance Cm

V represents solely the lin-
ear mechanical response of the ceramic. It means that under small
signal modulation, no domain switching occurs because of the
tiny modulation amplitude and the short time constant �5 Hz�. If
we vary the small signal amplitude as well as the frequency of
5 Hz by a factor of 2, Cm

V is unchanged within the experimental
uncertainty. With a variation of about 1% Cm

V represents a mini-
mum constant compliance value, implying that we measure below
a certain threshold, where no domain switching occurs any more.
It seems that even in the general case of large scale yielding, the
modulation technique measures solely the linear response of the
system.

The energy contributions during complete unloading of the
specimen and during crack advance are shown schematically in
the load-displacement diagrams in Figs. 5�i� and 5�ii�. Here, we
address the pure mechanical case, which turns out to be reason-
able, when the electrical influence is examined further below. At
point �c� �Fig. 5�i�� the elastically stored energy is given by the
area �B�. When unloading the sample completely from point �c� to
�d�, the area �C� denotes the energy, which is regained mechani-
cally by domain back-switching. If loading again the specimen to
point �c�, the area �D� is a measure for the hysteresis energy,
converted into thermal motion. The parallel lines 1 and 3 denote
the �inverse� small signal compliance, corresponding to the linear
elastic material response.

During the experiments for the evaluation of the critical energy
release rates, the specimens were never unloaded, in order not to
disturb the measurement. However, due to the small signal modu-
lation technique, the total energy release rate can be separated into
the energy due to linear elastic processes �area �E�� and the rem-
anent energy �area �F�� as proposed by Sakai and Bradt �19� �see
Fig. 5�ii��. Referring to that reference, we assume also that area
�E� corresponds solely to the creation of a new crack surface. Area
�F� includes energies from remanent inelastic processes as well as
energies due to elastic residual stresses in the domain switching
area, which influence the crack advance. Rose and Swain �20�
denote the overall energy �E�+�F� per newly created crack surface
as specific incremental “work of fracture.” Note that the displace-
ment increment d�l in Fig. 5�ii� due to linear processes at crack
advance is not identical to the quantity d�l in Table 1, which is
measured at constant crack length. The two quantities �d�l and
d�r�, given in Fig. 5�ii�, are not used further in this paper and are
given only for clarification with respect to �l and �r in Eq. �2�.

The hysteresis processes during unloading and loading can be
explained by a process zone, which is partly reducing its size
during unloading and is increasing again during loading. In Fig. 6,

Fig. 3 Raw data of the load-displacement diagram for poled
PZT. Two „out of six… unloading cycles are shown. The mea-
surement is performed with the 5 Hz modulation.

Fig. 4 Load-displacement curves of Fig. 3, including all six
unloading cycles. The dotted “small signal” lines and the dis-
placement are corrected according to Eqs. „A1… and „A5… in the
Appendix . The starting point on the displacement axis is
shifted arbitrarily to the origin „as also shown in Fig. 3….
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the crack and the process zone are shown schematically. The
charts 6�a� to 6�e� in Fig. 6 correspond to the points �a� to �e� in
the inset force-displacement diagram and to Fig. 5. The very first
loading from �a� to �b� in Fig. 5�i� shows some nonlinearity that
we interpret as the creation of a frontal process zone. By unload-
ing the sample from points �c� to �d� �Fig. 5�i��, the process zone
around the crack tip decreases by the vertically hatched area �C�
in Fig. 6�c�. Reloading from points �d� to �c� increases the process
zone again and leads to the nonlinear load-displacement curve.
Therefore, the process zone height in the crack wake is drawn
smaller than the process zone at the crack tip. Due to this revers-
ible process, we assume partial domain back-switching in the
wake. When the crack grows by an increment �a from �c� to �e�
�Figs. 5�ii�, 6�, the fully developed process zone is shifted under
stationary conditions along the distance �a. The diagonally
hatched area �F� in Fig. 6�e� indicates the area of remanent do-
main switching belonging to �a �energy �F� in Fig. 5�ii��.

With this interpretation of the load-displacement curve at zero
electric field, the intrinsic toughness during stable steady state
crack growth as defined in Eq. �5� is

Gc
intr = Gm

V =
area�E�

�A
�20�

The toughness part, including domain switching, during steady
state crack growth is

�Gc =
area�F�

�A
�21�

The interpretation of the force-displacement curve given above is
also applied for mechanical loadings with a constant applied elec-
tric field. Under constant voltage, the F-� curve includes the pi-
ezoelectric displacement �p, which can be calculated according to
d�p=VdCp. The compliance Cp�A� is a function of the crack
length and the measured value varies roughly between ±10 pm/V
for the essential crack extensions �see Figs. 8�b� and 9�b��. Ac-
cordingly, for maximum applied voltages of 14 kV, the piezoelec-
tric displacement varies between ±0.14 
m, which is small
enough to be neglected.

Since the Q-V curve during crack extension is not measured,

Fig. 5 Schematic load-displacement diagrams for crack ad-
vance in ferroelectric PZT. „i… Energies during a complete un-
loading cycle at crack initiation and after a certain crack ad-
vance, „ii… energies during crack growth from „c… to „e… without
unloading.

Fig. 6 Schematic crack and process zone area. „a… Initial
notch. „b… The specimen is loaded to a value just before the
crack starts to grow, which creates the frontal process zone.
„c… The crack has grown. „d… The specimen is completely un-
loaded. „e… The crack is loaded again and has grown by an
amount �a. The diagonally hatched area „F… in „e… shows the
process zone area of remanently switched domains, corre-
sponding to the crack extension �a. The vertical arrows indi-
cate tensile stress. The capital letters „A…, „C…, and „F… correlate
to the corresponding areas in Fig. 5. The panels „a… to „e… cor-
respond to the points „a… to „e… in Fig. 5.
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we only have information about the mechanical remanent energy
part. With our experimental setup, it was not possible to determine
the total �Gc, because we do not know the whole electrical energy
change due to irreversible processes. �A rough estimate is given
further below.� On the other hand, we have the complete informa-
tion to calculate Gc

intr by evaluating the compliances Ce
F, Cm

V , and
Cp during stable crack growth and entering them into Eq. �10�.

4.2 Critical Energy Release Rate. As the small signal modu-
lation measures the linear elastic response, we may apply the ap-
proach of Suo using Eqs. �10� to �13�. For zero electric field, the
resulting intrinsic toughness Gc

intr=Gm
V�a�, given in Fig. 7, is ap-

proximately 12 J /m2.
With the setup in Fig. 1, the electric loads between −14 kV and

14 kV had been applied before the specimens were loaded me-
chanically. Furthermore, for all electric loads including zero field,
the specimens were not unloaded in between, as said before.

As expected, the measured mechanical compliance Cm
V at elec-

tric fields of −500, −250, 0, 250, and 500 V/mm reveals a mono-
tonic increase with respect to the crack length �Fig. 8�a��. The
curves look similar, irrespective of the applied electric field. The
piezoelectric compliance curves in Fig. 8�b� are also similar ex-
cept one at −500 V/mm, which proceeds significantly higher than
the other curves. The strong electric field opposite to the poling
direction together with the high mechanical stress probably leads
to large scale domain reorientation processes. Although the ap-
plied field is definitely below the coercive field of approximately
Ec=850 V/mm, it is probable that the original piezoelectric state
of the PZT ceramic is already disturbed.

The calibration of the current and charge measurement, respec-
tively, was verified in a uniaxial compression test with a cubic
poled PZT PIC151 specimen. The zero crossing of Cp can be
understood qualitatively as follows. For an ideal bending bar, in
principle, the piezoelectric compliance is zero. The charges gen-
erated in the compression and in the tension zone compensate
each other. In the present case, the bending bar is single edge
notched, which leads to asymmetric behavior. This asymmetry
probably changes its characteristic, as the crack proceeds through
the specimen, which could explain the tendency in Fig. 8�b�. Both
quantities Cm

V and Cp are corrected according to Eqs. �A1� and
�A2�.

The electrical capacitance is not measured absolutely, but only
its change is acquired with the precision mentioned above. Hence,
the curves shown in Fig. 8�c� are shifted vertically to fit the arbi-
trarily chosen mutual value of 8.5 pF at a crack length of a
=1.5 mm. �It is a typical capacitance of the used specimens with
such crack length.� For crack lengths smaller than 3 mm, the ca-
pacitance curve is nearly linear and for longer cracks, it declines
strongly.

For calculating the derivatives of the compliances, suitable ana-
lytical functions are fitted with respect to the crack length. The
functions and the motivation for their choice are given in the
Appendix �Eqs. �A6� to �A8��. Figure 9 presents the curves for
E=500 V/mm. The quantities are fitted between 0 mm and
1.8 mm crack extension corresponding to 1.0 mm and 2.8 mm of
total crack length.

Note that the piezoelectric compliance ��Ql /�F� in Figs. 8�b�
and 9�b� exhibits an unsteady behavior like a step at the zerocross-
ing. With increasing crack length, the decreasing charge amplitude
dQl as a function of time �sine function� does not continuously
pass zero, which would be equivalent to a sudden phase shift of
180 deg. Instead, the charge amplitude dQl passes a minimum at a
small positive value, and simultaneously the phase is shifted
slowly from 0 deg to 180 deg. Since, in the calculation of Cp �Eq.
�16��, this continuous phase shift of the charge signal with respect
to the force signal is not included, the sign of Cp is changed when

Fig. 7 Intrinsic toughness for poled PZT without applied elec-
tric field. The compliance curve for calculating the energy re-
lease rate is fitted for crack extensions between 0 mm and
1.5 mm. The dashed line represents 12 J/m2.

Fig. 8 „a… Mechanical and „b… piezoelectric compliance as well
as „c… capacitance as a function of the crack length for different
electric fields and corrected according to Eqs. „A1… and „A2….
For a better comparison the crack length is used, being the
sum of notch depth „between 0.98 mm and 1.07 mm… and crack
extension.
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the measured phase shift becomes more than 90 deg. Thus, this
drop of a few pC/N has a technical reason. It cannot be considered
by the given theoretical approach and is bypassed, while fitting a
smooth curve along this step in the Cp diagram. Fixing the phase
at a certain value would yield a smooth zero crossing of Cp, but
yields other difficulties while calculating Cp. In Fig. 8�b�, it can be
seen that this step is comparatively small with regard to the whole
Cp curve.

The derivatives of the fitted compliance and capacitance curves
are calculated analytically and multiplied by the measured force F
and electrical load V according to Eqs. �11� to �13�. Thus, for the
linear processes we obtain the mechanical, the piezoelectric, and
the electric energy release rates, which are shown in Fig. 10 for an
electric field of +500 V/mm.

The evaluation of the mechanical energy release rate Gm
V during

the first 200 
m crack extension that shows an increase with in-
creasing crack length has a strong uncertainty. It stems from the
increase of the force F at the beginning during the first 200 
m
crack advance. Looking at the expression of Gm

V �Eq. �12��, the
initial increase of the term F2 can, in principle, be compensated by
a corresponding variation of �Cm

V /�A. Nevertheless, Cm
V�a� is fitted

by a hyperbola of only three free parameters �Eq. �A6��, which
does not allow us to fit short range variations.

The electric and the piezoelectric components are negative. For
crack extensions from 0.5 mm to 1.5 mm, Gm

V , Ge
F, and Gp are

almost constant as for all other applied electric loads. This indi-
cates that the crack extension is in a steady state regime, which
confirms the assumptions for the formulation of Gc. At crack ex-
tensions above 2 mm, i.e., at crack lengths larger than 3 mm, the
mechanical and the piezoelectric energy release rates approach
zero smoothly. The electric part in that region, on the other hand,
decreases dramatically down to about −150 J /m2. We assume that
at these large crack lengths the process zone touches the speci-
men’s “back side.” Additionally, the correction of Cm

V according to
Eq. �A1� gets a strong influence on the result, since the device
compliance Cm01 is relatively large for small loads �compare Fig.
17�a��. Therefore, the range of crack lengths above 2.5 mm is not
further analyzed.

Assuming a steady state crack growth between 0.5 mm and
1.5 mm crack extension, we average the data in this interval in
order to minimize the experimental scatter and to display these
medium values versus the applied electric field �Fig. 11�.

Since the electrical field concentration at the crack tip is geom-
etry dependent, it would be more appropriate to display the results
as a function of the intensity factors KI and KIV. However, we
would have to postulate certain boundary conditions in order to
calculate an electrical intensity factor KIV. Even if it has been
experimentally shown that for the PZT used the apparent relative
permittivity in the crack is not 1 but around 40 �14�, the electric
charge distribution on the crack surfaces is unknown. To avoid
unproved conditions, we simply display the measured components
of the energy release rate as a function of the �known� electric far
field. The original notch depths are always within 0.98 mm and
1.07 mm and the other geometrical features are nearly identical
for all specimens, so that the comparison in Fig. 11 is reasonable.
The experimental data of the energy release rate contributions are
presented without any theoretical assumption.

The measured energy release rate Gm
V at crack propagation is

roughly constant over the measured range of applied electric
fields. At zero electric field we have Gm

V =11.5 J /m2 �averaged for
two samples�. This agrees very well with the value of 12 J /m2

found by Heyer et al. �28� for the same material but for a con-
ducting crack at KE=0 kV/m1/2, meaning pure mechanical
loading.

The measured Ge
F values during controlled crack propagation

are negative as expected �22� and exhibit a parabolic shape with
respect to the electric load. The reason is as follows. As shown in
Figs. 8�c� and 9�c�, Ce

F and thus also �Ce
F /�a are almost indepen-

dent of the applied electric field. Hence, the part of the energy
release rate given in Eq. �11� depends mainly on the square of the

Fig. 9 „a… and „b… Compliances and „c… capacitance as a func-
tion of the crack extension for an electric field of 500 V/mm and
corrected as described before. The fitted analytical functions
are used to differentiate the experimental data with respect to
the crack surface area. „For the discontinuity of Cp, see text
and compare with Fig. 8„b…….

Fig. 10 Measured energy release rates Gm
V , Ge

F, and Gp for an
electric field of 500 V/mm during stable crack advance
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voltage V2, which means that Ge
F is proportional to E2 in this

range of crack lengths. The piezoelectric part Gp during controlled
crack propagation is small and shows a linear behavior, which can
be explained by an analogous argument.

At applied fields of −500 V/mm, the piezoelectric and the elec-
tric energy release rates deviate from the main trend lines. We
assume that this is due to the beginning large scale depolarization
in the sample, as explained before in the context of Fig. 8�b�.

Concerning the linear processes, Fig. 11 shows the three com-
ponents of the total energy release rate available at crack growth.
The sum of them, which we define as Gc

intr �Eq. �5�� or Gl
tot in the

critical state �Eq. 10�, respectively, is not constant, as we would
expect. It even becomes negative for 500 V/mm. This is not com-
patible with the interpretation of Gc

intr as the energy necessary to
break the atomic bonds. From the experimental results, it is ap-
pealing to take only the mechanical part Gm

V as the criterion for
crack growth, because it is almost constant for all applied electric
fields. A similar conclusion has already been suggested by Park
and Sun �8�, but the physical argument that justifies this approach
is missing.

If we assume that free charges completely screen the remanent
as well as the dielectrically induced polarization charges on the
crack surfaces, the electric field would penetrate the crack cavity
without any disturbance. As a consequence, there would not be
any change in the measured capacitance as a function of crack
length and Ge

F would be zero.
On the other hand, our measurements, which show a change in

the small signal capacitance with crack length obviously contra-
dict this assumption. A possible solution for this dilemma is that
during the 10 kHz modulation of the voltage with an amplitude of
1.5 V biased by the high applied voltage of several kV, the screen-
ing charges cannot follow. The consequence is that the small sig-
nal modulation measurement �10 kHz� detects a purely linear re-

sponse of our sample. Especially for the modulated signal and
only for this, no screening charges are created at the crack surface.
This would explain the measured change in capacitance with
crack advance even though under the quasistatic conditions of
crack growth, the polarization charges would be completely
screened.

This explanation is in so far very probable because unscreened
remanent polarization charges would lead to never measured ex-
tremely high crack growth retarding effects. This was shown theo-
retically in �16�. In almost all of the literature, it is implicitly
assumed that the remanent polarization charges at the crack sur-
faces are screened. Taking this idea as serious, the induced polar-
ization charges should also be screened, which is consistent with
the above given approach. Sources for screening charges could be
water surface layers or already existing ions, and produced ions
and electrons from dielectric breakdown events in the crack cavity
atmosphere.

A model assumption for breakdown in the interior of the crack
is that the electric field cannot rise above a critical level. Thus,
free charge is created and deposited on the crack faces sufficient
to keep the electric field in the crack to the breakdown level �17�.
As internal sources for screening, a small electric conductivity of
the PZT could create space charges or domain switching localized
at the crack surface and could average out the remanent polariza-
tion. A similar structure was detected during domain wall move-
ment �29�. Both effects �screening and breakdown� would create
an electric dc current during crack advance, which is not covered
in the intrinsic energy release rate and would certainly influence
the energy balance.

The measured change of the piezoelectric compliance is ob-
tained by the slow 5 Hz modulation signal, which is applied me-
chanically. The charge response on the electrodes is due to the
state of the sample with the assumed unchanged screening charges
on the crack surface. Therefore, this electric signal should give the
correct physical result.

For the evaluation of the linear energy release rate, we have to
sum up the mechanical, piezoelectric, and electric part as given in
Eq. �10�, but now we set Ge

F=0, as explained above. The result for
the total critical linear energy release rate with values between
about 9 J /m2 and 12 J /m2 is shown in Fig. 11. This would imply
that Eqs. �5� and �10� represent a theoretical approach, which
practically must be modified in the case of electric loads, because
then the physical situation is much more complex.

Although the resulting curve �open circles� is nearly constant, a
slight dependency on the electric load seems to exist. Neglecting
this dependency, we get an average value for Gm

V as well as for
Gm

V +Gp of about �10.5±1.0� J /m2. We assume that the small
changes of up to 2 J /m2 are significant and due to electric field
effects of e.g., not completely screened polarization charges.

As far as we know, this is the first time that the intrinsic energy
release rate was measured. In our opinion, care must be taken
when comparing this result with other experiments such as those
of Park and Sun �8�, Fu and Zhang �12�, or our own �23�, which
show different tendencies. In all the experiments performed be-
fore, it has not been distinguished between the linear part of the
energy release rate and the energy release rate including domain
switching effects.

4.3 Measured Fracture Resistance Curves at Different Ap-
plied Electric Fields. Even though the evaluation of the critical
stress intensity factor during controlled crack growth is not the
central issue of this article, it is easily possible to evaluate the
measured crack growth data according to Eq. �18�. The corre-
sponding R-curves are shown in Fig. 12. These results must be
treated carefully because they cannot be regarded as classical
R-curves. The associated KIV-curve would be needed additionally
in order to give the full evaluation of the data which could be
taken to identify a generalized mixed mode fracture criterion.
�Therefore, the index “c” in KI

c is written in the upper position.�

Fig. 11 Intrinsic energy release rates averaged between
0.5 mm and 1.5 mm crack extension. The linear and parabolic
functions shown are valid for the idealized case, i.e., that the
derivatives of Cp and Ce

F are independent of the electric field
„see text…. The data points are measured with only one sample
for each electric field, except for the one at zero field, where
two samples are averaged. The open circles connected by the
gray line are the sum of all three contributions, where addition-
ally Ge

F has been set to zero. Thus, actually it is the sum of Gm
V

and Gp.
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Beside this it can be stated that under all applied electric fields,
the fracture resistance curve is rising to a plateau value after about
0.3 mm crack advance.

From Fig. 12, we see that the R-curve at E=−250 V/mm pro-
ceeds significantly lower than the other curves, which is reflected
by the tendency in Fig. 11. The corresponding mechanical energy
release rate Gm is about 2 J /m2 or 3 J /m2 smaller than the values
at the other electric fields. The slight unsteady increase of the
R-curves differs from one to the other specimen, even at the same
electric field. This is probably due to the individual crack path and
residual stresses from poling in each specimen �more information
is given further below�.

4.4 Implications for the Stress Intensity Factor Applying
Irwin’s Equation. The crack closure integral leads to the Irwin
matrix H �Suo et al. �3��, which establishes the link between the
linear �crack tip� energy release rate and the crack tip stress inten-
sity factor. The crack tip energy release rate is given by �3�

Gl
tip =

1

4
K · H · KT �22�

with

K = �KII,KI,KIII,KIV� �23�

and KI, KII, and KIII being the mechanical stress intensity factors
and KIV being the electric intensity factor at the crack tip. The
symmetric Irwin matrix was calculated by Kemmer �30� for the

material parameters of PZT PIC151 and since KII and KIII are zero
in four-point bending, we are left with

�H22 H24

H42 H44
� = �45.1 	 10−12 m2/N 39.7 	 10−3 m2/As

39.7 	 10−3 m2/As − 123 	 106 V2/N
�

�24�

Let �� be the electric potential jump between the opposite crack
faces. If we assume a permeable crack, then the condition ��
=0 is equivalent to the following equation �3,23�:

KIV = −
H24

H44
KI �25�

Inserting the expression of KIV into Eq. �22� and using the quan-
tities of Eq. �24�, we get

KI
2

Gl
tip = 4�H22 −

H24
2

H44
�−1

= 69 GPa �26�

During controlled crack growth, the crack tip energy release rate
is physically this part of the released energy in the sample which
is used to break the atomic bonds and therefore, in our terminol-
ogy, the intrinsic toughness Gc

intr. The experimentally measured
plateau value of the intrinsic toughness for zero electric field is
Gc

intr=Gm
V =11.5 J /m2.

The crack tip toughness is close to the starting value of the
measured R-curves. Probably it is even a little bit less because
already the frontal zone may lead to crack tip shielding. But since
there is no other information available, we identify—as an
attempt—the starting value of the R-curve with the intrinsic frac-
ture toughness �without domain switching�, being aware that this
can be seen only as a rough estimate. For the measured KI

C-curve
without electric field �Fig. 12�, we get Kintr=0.82 MPa�m �aver-
aged for two samples�. Using the intrinsic toughness and intrinsic
fracture toughness, we get �Kintr�2 /Gc

intr=58 GPa, which is in good
agreement with the theoretical result of Eq. �26�.

Furthermore, the FE calculations reveal that at zero electric
field, KIV for the permeable and impermeable crack are nearly the
same within a few percent. Thus, if we assume the semipermeable
crack being a “linear superposition” of permeable and imperme-
able crack �31�, the above equations should be reasonable for all
degrees of semipermeability.

4.5 Mechanical Inelastic Energies. Beside the intrinsic criti-
cal energy release rate Gc

intr, we evaluate now the mechanical part
of the total critical energy release rate Gc �Eq. �6��, including both
intrinsic energies and all other remanent mechanical processes due
to domain switching �area �E�+ �F� in Fig. 5�ii��. This “energy
release rate” Gc

mech is calculated from the load-displacement dia-
gram as given by Sakai and Bradt �19�. Thus, we determine geo-
metrically the area �E�+ �F� �Fig. 5�ii�� and divide it by the corre-
sponding new crack surface area dA. If we indicate the points �c�
and �e� in Fig. 5�ii� with the indices “1” and “2” and taking into
account that the slopes of the lines 1 and 2, are the inverse me-
chanical compliances �1/Cm

V�, we get:

Gc
mech =

Cm1
V F1

2 + �F1 + F2���2 − �1� − Cm2
V F2

2

2dA
�27�

According to Rose and Swain �20�, this corresponds to the work
of fracture, as said before. The equation cannot be applied directly
to each pair of adjoining experimental data points because of the
experimental scatter. Instead, we use an averaging procedure over
several data points. In Eq. �27�, F and � are averaged over each
ten adjoining data points, Cm

V is taken from the analytical fit, and
the result is averaged again as before. The work of fracture Gc

mech,
including the intrinsic toughness and also remanent processes, is
given in Fig. 13 for applied electric fields of −500, 0, and

Fig. 12 Fracture resistance curves for external electric fields
between −500 and 500 V/mm. The initial increase and also the
main level are similar for all fields with the exception of
−250 V/mm. Here, the curve proceeds slightly lower than the
other ones.
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500 V/mm.
The high initial values of Gc

mech are based on energies from
creating the frontal process zone. This effect was observed also by
Rose and Swain �20� for partially stabilized zirconia. There are
strong variations of Gc

mech for crack extensions above 0.5 mm,
which are different for each specimen, even if the same electric
field is applied. Thus, it seems that Gc

mech is quite sensitive on the
individual crack path. This would include e.g., crack bifurcation,
double cracks, and crack bridging. It means that these fluctuations
are only qualitatively significant, but not their individual shapes.
�Beside this we have to admit that the variations are possibly
influenced by the evaluation procedure.�

On the other hand, the critical energy release rate Gm
V does not

exhibit such variations, implying that the small signal compliance
method is quite insensitive to the individual crack path, crack
bridging, etc. For crack extensions above 0.5 mm, Gc

mech is about
two to three times larger than Gc

intr. Thus, in our four-point-
bending configuration, remanent switching processes, being the
difference Gc

mech−Gc
intr, are up to twice as large as Gc

intr.
From Fig. 14, showing medium mechanical energy release rates

�averaged between 0.5 mm and 1.5 mm crack extension� for dif-
ferent electric fields, we get the same result. For example, during
the measurement at E=375 V/mm, much more crack branching
and bridging was observed than in the other measurements, due to
the properties of the individual specimen. This can be seen by the
increased values in the upper curve �Fig. 14� at this particular
electric field, but not in the lower curve for Gc

intr. Looking at the
general trend, the contribution to the energy release rate from
remanent switching processes increases from −500 V/mm to
500 V/mm by about a factor of 2.

From load-displacement curves in which we unloaded the
specimen completely just at the moment of crack initiation, we
can evaluate the energy due to domain switching in the frontal
zone. The energy stored is about WF=120 
J for our sample ge-

ometry �measured at zero external electric field�.
There may be some concerns if so much energy is put only into

the frontal zone or whether large scale deformation takes place.
Kounga Njiwa et al. �32� used a liquid crystal display technique to
monitor the electric surface potentials in front of the crack tip and
estimated a switching zone size of 600 
m to 800 
m. Hack-
emann and Pfeiffer �33� applied a spatially focused X-ray diffrac-
tion technique and determined about 290 
m switching zone size.
Both experiments were performed with PZT PIC151 and demon-
strate a substantial switching zone. These experiments show that
no large scale domain switching processes take place. A simple
estimate confirms these experimental findings. If the remanent
polarization of 0.32 C/m2 �34� times 2 and multiplied by the co-
ercive field of 0.85 kV/mm is taken as a measure for the energy
density change during domain switching �35�, we get about ws
=0.0005 J /mm3. If we roughly approximate the frontal zone by a
circle of area S going through the sample of thickness t=3 mm, S
is calculated to be S=WF /wSt. For the linear dimension �diameter�
of the switching zone size, this finally gives 2�S /��0.3 mm,
which corresponds well to the experimental results of �32,33�.

In principle, the compliance change during crack extension is
also affected by the growth of the process zone because the linear
piezoelectric tensor is not isotropic. A polarization change may
change the dielectric and elastic properties by approximately 10%.
The volume change of an assumed remanent process zone of
width 1 mm during a measurable crack extension dA of 50 
m
	3 mm �sample thickness� is 0.15 mm3. Compared with the
loaded sample volume of about 240 mm3, this leads to a negli-
gible compliance change of less than 0.1%.

Thus, by evaluating the linear part of the energy release rate
together with the load-displacement curve as described before, we
can separate the linear �crack tip� energy release rate from switch-
ing zone processes. If in previous experiments these energy re-
lease rates were not separated, the detailed interpretation of the
results sometimes seems difficult.

Fig. 13 Critical mechanical energy release rates, especially
linear contribution „black points… and mechanical work of frac-
ture „open points… for different applied electric fields „−500, 0,
and +500 V/mm…. The latter energy release rate comprises en-
ergies due to linear elastic processes as well as remanent
energies.

Fig. 14 Comparison of the “intrinsic” mechanical energy re-
lease rate Gm

V
„lower curve, as in Fig. 11… with Gc

mech
„upper

curve… including remanent switching processes during crack
advance. When calculating the standard deviation for the data
points between 0.5 mm and 1.5 mm crack extension „Fig. 13…,
which gives a rough estimate for the error of the data, we get
for the lower curve around ±1 J/mm2 and for the upper curve
about ±10 J/mm2

„the latter number seems a little bit high.…
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4.6 Electric Dissipative Energies. If Gc
elec is the electric en-

ergy release rate, including intrinsic as well as dissipative ener-
gies, we get for the toughness

Gc = Gc
mech + Gc

elec �28�

Whereas Gc
mech is determined from the load-displacement diagram

using the measured mechanical compliance, the term Gc
elec can be

derived in principle from a corresponding charge-voltage diagram
using the measured capacitance.

A remark concerning the loading path must be added. The ex-
periments with electric load are started by increasing the voltage
up to a constant value before the sample is loaded mechanically.
During crack growth, the voltage is kept at a fixed level by the
power supply. With respect to the load-displacement diagram, an
extension from the pure mechanical to the electromechanical case
can be achieved, if we vary the electric load proportionally to the
mechanical load. We would get a corresponding diagram with a
generalized load and a generalized displacement. Unfortunately, in
our case the situation is more complicated. On the other hand, the
results show that the influence of the electric load is weak and
therefore, we neglect this problem. The following should be seen
as a rough estimate concerning nonlinear electrical processes.

As mentioned before, Gc
elec could not be measured, since the

long-run charge measurement was disturbed by the capture of
electromagnetic radio frequencies. Note that within the measured
quantities in Table 1, only the charge modulation dQl is measured
at constant crack length, whereas the accumulated charge Q dur-
ing crack advance and in between is missing. Under electrical
aspects, up to now we determined the state of the sample just
before and after each crack advance.

In order to still get information about electrical processes dur-
ing actual crack growth, the charge was measured during crack
advance once with a poled PZT specimen at an electric field of
250 V/mm. Each crack advance takes about 1 or 2 s, so that
electromagnetic disturbances during this time have only little in-
fluence. The electric current is automatically integrated during
each measurement and divided afterwards by the area of the cre-
ated new crack surface. The average charge generated immedi-
ately per new crack surface area was about �410±200� 
C/m2

measured in the range of crack extensions between 0.5 mm and
1.5 mm. This phenomenon is clearly no piezoelectric effect, as
could be seen in “short-time Q-F diagrams.”

After stopping the crack the electric current does not stop im-
mediately but decreases slowly. Such a delayed “time effect” in
the behavior of PZT was observed on other occasions. However, it
does not influence the measurement of the intrinsic toughness.

The measured charges �410 
C/m2� if attributed to crack sur-
face charges are less than 0.2% of the remanent polarization of
0.32 C/m2 for poled PZT PIC151. This is a strong indication that
the remanent crack surface polarization charges are balanced by
internal processes such as local domain switching or space
charges. On the other hand, the dielectric polarization charge P
=�0E for our material parameters gives about 2000 
C/m2,
which is still higher than but much closer to the measured values.
In summary, these results support the idea of screening crack sur-
face charges or breakdown effects, but are not sufficient to dem-
onstrate them, and additional, more refined measurements are
necessary.

Concerning the total energy balance, a future experiment for
measuring the total energy release rate including all electric dis-
sipative processes is technically possible and might help to answer
the remaining questions. However, beside this we hope that the
present experimental data provide a useful basis for further dis-
cussions.

5 Summary
The intrinsic toughness as well as the extrinsic nonlinear do-

main switching toughening in polarized PZT PIC151 is measured.

During stable crack growth, the mechanical and the piezoelectri-
cal compliance as well as the electrical capacitance of the PZT
sample is measured simultaneously as a function of the crack
length using modulation/demodulation techniques. Computation
of the derivatives of these generalized compliances with respect to
the crack surface area allows for the calculation of the mechani-
cal, the piezoelectric, and the electrical part of the energy release
rate due to linear processes. To our knowledge, this is the first
experimental result where these linear parts are well separated
from nonlinear, especially domain switching contributions, al-
though Rose and Swain �20� as well as Sakai and Bradt �19� had
presented the basic principle before.

This novel experimental technique, based on the small signal
modulation and stable crack growth, is easily applicable also to
other ceramics with process zones in order to separate the intrinsic
toughness from extrinsic nonlinear contributions.

With the assumption of screened polarization charges—for ex-
ample due to electric breakdown—and by neglecting the slight
electric field dependency, an average intrinsic toughness of
�10.5±1.0� J /m2 for electric fields between −500 V/mm and
500 V/mm is determined. It seems probable that the slight field
dependency of the measured intrinsic toughness is due to small
contributions of the linear electric part of the energy release rate.

The information of the mechanical compliance and the load-
displacement curve allows for the evaluation of mechanical en-
ergy changes related to domain switching in the vicinity of the
crack. Additionally, a frontal process zone is identified. From the
corresponding energy, a frontal zone size of the order of 0.3 mm
can be estimated consistently to other experimental results. The
mechanical toughening effect of the process zone is increasing
from negative to positive external electric fields.
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Appendix: Data Processing

Evaluation of Cm
V and Cp

The mechanical compliance is measured at constant voltage. To
simplify matters, the superscript “V” is omitted. The finite com-
pliance of the experimental device leads to corrections of the mea-
sured Cm and Cp values. The essential mechanical arrangement is
given in Fig. 15, where dF and d� are the measured 5 Hz modu-
lation amplitudes of force and displacement, respectively. Thus,
the measured mechanical �mm� compliance, simply, is Cmm
=d� /dF. To obtain the actual bending compliance of the speci-
men �Cm�, Cmm must be decomposed according to Fig. 15.

Obviously, the compliance of the mechanical support of the
specimen directly increases the overall compliance as described
by the series connection. In addition, the specimen is compressed
slightly by the support rollers. Both aspects are included in Cm01.
Mainly because of the circular shape of the support rollers, Cm01 is
dependent on the applied load F. It is measured by using equal
support distances of 20 mm each, as shown in Fig. 16�b�. Taking
the arrangements in Fig. 16, the subtraction �a�− �b� for each ap-
plied mechanical load F yields pure bending of the specimen.
Concerning Fig. 15, the case in Fig. 16�b� means a parallel con-
nection of Cm01 and Cm02 only.
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Due to the dynamic modulation measurement, additional effects
must be taken into account. Since the modulation amplitude is
very small, frictional forces pin the rotatable wheel of the dead-
weight compensation �Fig. 2, right�, which leads to a parallel con-
nection of the decoupling spring. A similar effect could exist in
the support guide. Together with the influence of the inertia of the
slightly oscillating upper support mass, these effects can be sum-
marized using an apparent compliance Cm02 connected in parallel.
This quantity can be determined directly by performing a mea-
surement without a specimen, simulating an “infinite” specimen
compliance. We get Cm02= �16±2� 
m/N for both 10/20 and
20/20 mm supports. The compliance Cm01 depends on the me-
chanical load F, whereas Cm02 does not. Since the frequency of
5 Hz is much smaller than the resonance frequency of the oscil-
lating mass, corresponding effects can be neglected.

With regard to Fig. 15 we have to consider at first Cm02 for both
arrangements �a� and �b� and then subtract the resulting compli-
ances from each other. Thus, the pure bending compliance of the
specimen is

Cm =
Cmm

�1 − Cmm/Cm02�
−

Cm01

�1 − Cm01/Cm02�
�A1�

The correction of the piezoelectric compliance is similar. From the
measured quantities using the 10/20 mm support we have Cpm
=dQ /dF and the analog value for the 20/20 mm support is Cp01.
On the basis of Figs. 15 and 16 with dF=dF1+dF2 and d�

=d�1+d�2 �see Fig. 15� and replacing the displacements d�,
d�1, and d�2 by corresponding charge quantities, we obtain a
similar expression for the piezoelectric compliance with respect to
pure bending load:

Cp =
Cpm

�1 − Cmm/Cm02�
−

Cp01

�1 − Cm01/Cm02�
�A2�

Note that a quantity Cp02 does not exist, since without a specimen,
no electric current can be measured. The denominators in Eqs.
�A1� and �A2� are identical, correspondingly. The correction term
Cp01, measured with the arrangement in Fig. 16�b�, is slightly
force dependent and of the order of 2 or 3 pC/N. The main dif-
ference between the mechanical and the piezoelectric case is that
Cm01 consists of two parts, i.e., the device compliance and the
compression compliance of the sample, and that Cp01 consists
only of the piezoelectric compliance due to the compression of the
sample. The associated corrections are approximately 5% to 30%,
because mostly Cm01�Cm�Cm02 in the range of the analyzed
crack lengths. To apply Eqs. �A1� and �A2�, the compliances
Cm01�F� and Cp01�F� are fitted by appropriate analytical functions
�see Eqs. �A3� and �A4��. The corrected values of Cm and Cp are
used in Eq. �17� for calculating Ce

F. The capacitance itself does not
need any correction.

The mechanical and the piezoelectric compliance Cm01 and
Cp01 are given in Fig. 17 as a function of the applied mechanical
load. At relevant forces of 10 N to 50 N, the mechanical correc-
tion term Cm01 still decreases by a factor of 3 �Fig. 17�a��,
whereas the piezoelectric term Cp01 is almost constant around
2.7 pC/N �Fig. 17�b��. The latter value varies for different PZT
samples by about ±10%. The functions fitted to the data are

Cm01 = � 0.6854

F�N� + 1.5896
+ 0.01034� 	
m

N

 �A3�

and

Fig. 15 Schematic arrangement of mechanical compliances of
the specimen and the equipment with Cm01™Cm™Cm02. The pa-
rameters d�1 as well as d�2 are the displacements, belonging
to Cm and Cm01. The latter one represents the compliance of the
mechanical frame plus the compression compliance of the
specimen and Cm02 corresponds to small elastic deformations
in the mounting and to inertia effects of the upper movable
support.

Fig. 16 Schematic drawing of the mechanical load configura-
tion: „a… bending and compression of the specimen as well as
loading of the device, „b… compression of the specimen and
loading of the device. The difference „a…− „b… yields the pure
bending compliance of the specimen.

Fig. 17 „a… Mechanical and „b… piezoelectric compliance mea-
sured with the 20/20 mm supports „Fig. 16„b…….
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Cp01 = � − 3.1857

F�N� + 1.2039
+ 2.8452� 	pC

N

 �A4�

Note that in Fig. 17, the compliance measurements are not depen-
dent on whether the force increases or decreases. This emphasizes
once more that the small signal compliance measurements are not
influenced by the actual domain configuration and by switching
processes.

Displacement Correction
The reasons leading to Cm01 also yield an additional displace-

ment, which has to be subtracted from the measured displacement.
As before, this displacement is force dependent and determined
directly by using the 20/20 mm supports. The data shown in Fig.
18 are fitted by the following analytical function:

�0�F� = �0.03399F�N� + 1.800 −
125.47

�F�N� + 7.00�2��
m�

�A5�
This function, describing the finite stiffness of the device and the
compression of the sample, is subtracted from the measured dis-
placement. The quantity Cm02 originates from dynamical effects
and therefore does not influence the quasistatic load-displacement
measurement.

In principle, the data in Fig. 18 must be fitted separately for the
loading and the unloading path. Nevertheless, this would make the
data evaluation even more complicated. As this correction is rel-
evant only for the load-displacement diagrams and not for the
small signal modulation measurements, we use only the single
curve in Fig. 18.

Analytical Functions Fitted to the Measured Compliances.
The best results for the mechanical compliance are obtained using
a hyperbolic function with 1/a characteristic, namely,

Cm�a� =
p1

a − p2
+ p3 �A6�

where p1, p2, and p3 are free parameters and a is the crack exten-
sion. For the fit of the piezoelectric compliance data, a logarithmic
function is used:

Cp�a� = p1 ln� p2 − a

mm
� + p3 �A7�

and the capacitance is fitted by a second-order polynomial:

Ce�a� = p1a2 + p2a + p3 �A8�
These functions are not chosen accidentally. In the case of using
polynomial functions for Cm and Cp, the corresponding deriva-
tives �Cm /�a and �Cp /�a and energy release rates exhibit strong
variations depending on the order of the polynomial used, because
the derivatives of Cm and Cp are rather small for short crack
lengths. To avoid this, smoother functions should be used, which
lead to more constant energy release rates. Generally, if we plot
the applied force F as a function of the crack length, we obtain a
nearly linear decrease with respect to the crack extension a.
Hence, �Cm /�a should have a 1/a2 characteristic to compensate
the F2 influence in Eq. �12�. Integration of �Cm /�a leads to the
1/a characteristic, which is finally used for Cm in Eq. �A6�. The
argument for Cp is analogous. For Ce

F, a polynomial of second
order is sufficient. It is important that the choice of these functions
has no physical intention. However, these functions require fewer
free parameters than polynomials and fit very well to the experi-
mental data.

The results are also sensitive to the range of crack extensions
where these functions are fitted. To avoid an influence of the pro-
cess zone, when it reaches the specimens’s “back side,” the com-
pliances and the capacitance are mainly fitted in the range be-
tween 0 mm and 1.6 mm crack extension.

References
�1� Haertling, G. H., 1999, “Ferroelectric Ceramics: History and Technology,” J.

Am. Ceram. Soc., 82�4�, pp. 797–818.
�2� Freiman, S. W., and Pohanka, R. C., 1989, “Review of Mechanically Related

Failures of Ceramic Capacitors,” J. Am. Ceram. Soc., 72�12�, pp. 2258–2263.
�3� Suo, Z., Kuo, C.-M., Barnett, D. M., and Willis, J. R., 1992, “Fracture Me-

chanics for Piezoelectric Ceramics,” J. Mech. Phys. Solids, 40�4�, pp. 739–
765.

�4� McMeeking, R. M., 1989, “Electrostrictive Stresses Near Crack-Like Flaws,”
ZAMP, 40, pp. 615–627.

�5� McMeeking, R. M., 2001, “Towards a Fracture Mechanics for Brittle Piezo-
electric and Dielectric Materials,” Int. J. Fract., 108�1�, pp. 25–41.

�6� Guiu, F., Algueró, M., and Reece, M. J., 2003, “Crack Extension Force and
Rate of Mechanical Work of Fracture in Linear Dielectrics and Piezoelectrics,”
Philos. Mag., 83�7�, pp. 873–888.

�7� Zhang, T. Y., Zhao, M., and Tong, P., 2002, “Fracture of Piezoelectric Ceram-
ics,” Adv. Appl. Mech., 38, pp. 147–289.

�8� Park, S., and Sun, C.-T., 1995, “Fracture Criteria for Piezoelectric Ceramics,”
J. Am. Ceram. Soc., 78�6�, pp. 1475–1480.

�9� Tobin, A. G., and Pak, Y. E., 1993, “Effect of Electric Fields on Fracture
Behavior of PZT Ceramics,” Proc. SPIE, 1916, pp. 78–86.

�10� Wang, H., and Singh, R. N., 1997, “Crack Propagation in Piezoelectric Ceram-
ics: Effects of Applied Electric Fields,” J. Appl. Phys., 81�11�, pp. 7471–7479.

�11� Lynch, C. S., 1998, “Fracture of Ferroelectric and Relaxor Electro-Ceramics:
Influence of Electric Field,” Acta Mater., 46�2�, pp. 599–608.

�12� Fu, R., and Zhang, T. Y., 2000, “Effects of an Electric Field on the Fracture
Toughness of Poled Lead Zirconate Titanate Ceramics,” J. Am. Ceram. Soc.,
83�5�, pp. 1215–1218.

�13� Schneider, G. A., and Heyer, V., 1999, “Influence of the Electric Field on
Vickers Indentation Crack Growth in BaTiO3,” J. Eur. Ceram. Soc., 19, pp.
1299–1306.

�14� Schneider, G. A., Felten, F., and McMeeking, R. M., 2003, “The Electrical
Potential Difference Across Cracks in PZT Measured by Kelvin Probe Micros-
copy and the Implications for Fracture,” Acta Mater., 51, pp. 2235–2241.

�15� Balke, H., Kemmer, G., and Drescher, J., 1997, “Some Remarks on Fracture
Mechanics of Piezoelectric Solids,” Proceedings of the International Confer-
ence and Exhibition of Micro Materials’97, B. Michel and T. Winkler, eds., pp.
398–401.

�16� Haug, A., and McMeeking, R., 2006, “Cracks With Surface Charge in Poled
Ferroelectrics,” Eur. J. Mech. A/Solids, 25, pp. 24–41.

�17� Landis, C. M., 2004, “Energetically Consistent Boundary Conditions for Elec-
tromechanical Fracture,” Int. J. Solids Struct., 41, pp. 6291–6315.

�18� Jelitto, H., Felten, F., Häusler, C., Kessler, H., Balke, H., and Schneider, G. A.,
2005, “Measurement of Energy Release Rates for Cracks in PZT Under Elec-
tromechanical Loads,” Electroceramics 2004, J. Eur. Ceram. Soc., 25, pp.
2817–2820.

�19� Sakai, M., and Bradt, R. C., 1986, “Graphical Methods for Determining the
Nonlinear Fracture Parameters of Silica and Graphite Refractory Composites,”
Fourth International Symposium on the Fracture Mechanics of Ceramics, VPI,
Chicago, June 19–21, 1985, Plenum Press, New York, Vol. 7, pp. 127–142.

�20� Rose, L. R. F., and Swain, M. V., 1986, “Two R-Curves for Partially Stabilized
Zirkonia,” J. Am. Ceram. Soc., 69�3�, pp. 203–207.

�21� Kreher, W. S., 2002, “Influence of the Domain Switching Zones on the Frac-
ture Toughness of Ferroelectrics,” J. Mech. Phys. Solids, 50, pp. 1029–1050.

�22� Suo, Z., 1991, “Mechanics Concepts for Failure in Ferroelectric Ceramics,”

Fig. 18 Displacement as a function of the force, measured
with equal support distances as in Fig. 16„b…. As described be-
fore, this effect corresponds to the compliance of the mechani-
cal support and to the compression of the sample. The zero
position on the displacement axis is arbitrary. The slightly dif-
ferent paths for loading and unloading are fitted by the same
curve „Eq. „A5…….

1210 / Vol. 74, NOVEMBER 2007 Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.42. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Smart Structures and Materials, ASME 1991, AD-Vol. 24/AMD-Vol. 123, pp.
1–6.

�23� Jelitto, H., Keßler, H., Schneider, G. A., and Balke, H., 2004, “Fracture Be-
havior of Poled Piezoelectric PZT Under Mechanical and Electrical Loads,” J.
Eur. Ceram. Soc., 25�5�, pp. 749–757.

�24� Kübler, J., 1998, “Bestimmung der Bruchzähigkeit keramischer Werkstoffe mit
der SEVNB Methode: Resultate eines VAMAS/ESIS Ringversuches,” in Pro-
ceedings of the Werkstoffwoche, EMPA, Dubendorf, Switzerland.

�25� Kübler, J., 2001, “Fracture Toughness of Ceramics Using the SEVNB Method:
From a Preliminary Study to a Standard Test Method,” in Fracture Resistance
Testing of Monolithic and Composite Brittle Materials, ASTM STP 1409, J. A.
Salem, M. G. Jenkins, and G. D. Quinn, eds., American Society for Testing
and Materials, West Conshohocken, PA.

�26� Fett, T., Munz, D., and Thun, G., 1995, “Evaluation of Bridging Parameters in
Aluminas From R-Curves by Use of the Fracture Mechanical Weight Func-
tion,” J. Am. Ceram. Soc., 78�4�, pp. 949–951.

�27� Jelitto, H., Felten, F., and Schneider, G. A., 2005, “Experimenteller Aufbau zur
Messung der Energiefreisetzungsrate für Risswachstum in PZT unter elektro-
mechanischer Last,” DVM-Bericht 237, 37. Tagung des DVM-Arbeitskreises
Bruchvorgänge, Technische Sicherheit, Zuverlässigkeit und Lebensdauer, pp.
365–372.

�28� Heyer, V., Schneider, G. A., Balke, H., Drescher, J., and Bahr, H.-A., 1998, “A
Fracture Criterion for Conducting Cracks in Homogeneously Poled Piezoelec-

tric PZT-PIC151 Ceramics,” Acta Mater., 46�18�, pp. 6615–6622.
�29� Muñoz-Saldaña, J., Schneider, G. A., and Eng, L. M., 2001, “Stress Induced

Movement of Ferroelastic Domain Walls in BaTiO3 Single Crystals Evaluated
by Scanning Force Microscopy,” Surf. Sci., 480, pp. L402–L410.

�30� Kemmer, G., 2000, “Berechnung von elektromagnetischen Intensitätsparam-
etern bei Rissen in Piezokeramiken,” Fortschritt-Berichte VDI, Reihe 18, Nr.
261, VDI Verlag, Düsseldorf �in German�, p. 33.

�31� Kessler, H., Balke, H., Jelitto, H., and Schneider, G. A., 2004, “An Approxi-
mation for Electrically Semipermeable Edge Cracks and its Application to
Fracture Analysis of PZT,” Proc. Appl. Math. Mech., 4, pp. 282–283.

�32� Kounga Njiwa, A. B., Lupascu, D. C., and Rödel, J., 2004, “Crack Tip Switch-
ing Zone in Ferroelectric Ferroelastic Materials,” Acta Mater., 52, pp. 4919–
4927.

�33� Hackemann, S., and Pfeiffer, W., 2003, “Domain Switching in Process Zones
of PZT: Characterization by Microdiffraction and Fracture Mechanical Meth-
ods,” J. Eur. Ceram. Soc., 23, pp. 141–151.

�34� Kolleck, A., 2000, “Einfluß der ferroelastischen Domänenschaltprozesse auf
die Bruchzähigkeit und Bruchfestigkeit von BaTiO3 und PZT,” Fortschritt-
Berichte VDI, Reihe 5, Nr. 614, VDI Verlag, Düsseldorf �in German�, pp.
159–160.

�35� Hwang, S. C., Lynch, C. S., and McMeeking, R. M., 1995, “Ferroelectric/
Ferroelastic Interactions and a Polarization Switching Model,” Acta Metall.
Mater., 43�5�, pp. 2073–2084.

Journal of Applied Mechanics NOVEMBER 2007, Vol. 74 / 1211

Downloaded 04 May 2010 to 171.66.16.42. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Lu Sun
Transportation College,

Southeast University,
Nanjing 210096, China;

Department of Civil Engineering,
The Catholic University of America,

Washington, DC 20064
e-mail: e-mail: sunl@cua.edu

Steady-State Dynamic Response
of a Kirchhoff’s Slab on
Viscoelastic Kelvin’s Foundation
to Moving Harmonic Loads
In this paper, fast Fourier transform and complex analysis are used to analyze the
dynamic response of slabs on a viscoelastic foundation caused by a moving harmonic
load. Critical speed and resonance frequency of the slab to a moving harmonic load are
obtained analytically. It is proved that there exists a bifurcation in critical speed. One
branch of critical speed increases as load frequency increases, while the other branch of
critical speed decreases as load frequency increases. There are two critical speeds when
the load frequency is low, but only one critical speed exists when the load frequency is
high. A parametric study is also performed to study the effect of load speed, load fre-
quency, material properties of the slab and the damping coefficient on dynamic response.
It is found that the damping coefficient has significant influence on dynamic response.
For small damping, the maximum response of the slab increases with increased load
speed and frequency. However, for large damping, the maximum response of the slab
decreases with increased load speed and frequency. �DOI: 10.1115/1.2744033�
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1 Introduction
The subject of pavement response to moving loads is of great

importance for pavement design and transportation infrastructure
management �Yoder and Witczak �1�, Haas et al. �2�, Sun and
Deng �3�, Sun �4�, and Sun et al. �5–7��. Highway and airfield
pavements need to provide sufficient structural capacity to carry
vehicular loads, �Monismith et al. �8�, Sun and Deng �3�, and Sun
�4��. Existing pavement design methods are based on the response
of pavements to static loads. The importance of dynamic pave-
ment response to moving load increases due to the trend of high-
speed surface transportation in recent years �Sun �9–12�, Kim and
Roesset �13�, Kononov and Dieterman �14�, Chen and Huang
�15,16�, Clouteau et al. �17�, Shamalta and Metrikine �18�, and
Sun et al. �5–7��.

Bush �19�, Scullion et al. �20�, and Uzan and Lytton �21� used
measured pavement dynamic response information to investigate
pavement nondestructive evaluation. Salawu and Williams �22�
studied the full-scale force-vibration test before and after struc-
tural repairs on bridges. Sun and Deng �3� and Sun and Kennedy
�23� studied the effects of pavement surface roughness and vehicle
suspension system on dynamic pavement loads. With the recent
development of a rolling weight deflectometer �Lee et al. �24��, it
is now possible to efficiently collect continuous deflection data of
highway and airfield pavements at a highway speed for transpor-
tation infrastructure management purposes. The vast amount of
data needs to be interpreted in order to assess highway and airport
conditions. This application essentially falls into pavement nonde-
structive testing and evaluation. Being able to characterize the
forward dynamic response of pavement to moving loads is a criti-
cal key component for ensuring the success of the development of
nondestructive evaluation algorithms. Pavement response to a
moving load becomes valuable for these purposes.

The majority of highway and airport pavements are made of
asphalt cement or concrete cement. The former is often named the
flexible pavement, while the latter the rigid pavement. Pavement
mechanics uses multilayered systems to characterize flexible
pavement and thin slabs on a Winkler elastic foundation to char-
acterize rigid pavements. In this paper the case of rigid pavements
is considered, and the case of flexible pavement was addressed
elsewhere �Sun and Greenberg �25��. Kenney �26� studied the
steady-state response of a moving load on a beam on elastic foun-
dation. Finite element procedures and integral transforms have
also been developed to carry out the response of a thin slab to
dynamic loads with applications in pavement design and nonde-
structive evaluation �Taheri �27�, Kukreti et al. �28�, Zaghloul et
al. �29�, Kim and Roesset �13�, Sun �10,12,30,31�, and Sun et al.
�5–7��. Deshun �32� applied the vibrational principle to solve the
vibration of thick slabs. The vertical vibration of an elastic slab on
a fluid-saturated porous half-space subjected to a harmonic load
was investigated by Bo �33�, in which the Hankel transform is
used to convert the governing equation to the Fredholm integral
equation of the second order and a numerical calculation can then
be carried out. In existing studies, pavement foundation is often
treated as an elastic Winkler foundation. Due to the presence of
damping in subgrade material, it is more appropriate to use a
viscoelastic foundation model.

One-dimensional structures, such as beams, are studied most
extensively in many of the existing studies �Sun �9,10,30��. In this
paper, we apply Fourier transform and complex analysis to inves-
tigate a two-dimensional structure. Specifically, the dynamic re-
sponse of an infinite slab on viscoelastic foundation subject to
moving constant loads and moving harmonic loads is studied. A
general dynamic response of slab to arbitrary dynamic loads is
obtained, which contains quiescence harmonic loads, a moving
constant load, and moving harmonic loads as special cases. The
critical speed and resonance frequency of the slab is derived ana-
lytically, which has not been seen in the literature. Another origi-
nal aspect of the paper is the development of a fast Fourier trans-
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form �FFT�-based efficient computation schema and a parametric
study for numerically evaluating the dynamic response of a slab
under moving loads.

This paper is organized as follows. In Sec. 2, the governing
equation of a thin slab on a viscoelastic foundation is established.
In Sec. 3, the Fourier transform is applied to develop the solution
of pavement response under various types of dynamic loads with
a special emphasis on moving loads. In Sec. 4, critical speed and
resonance frequency are derived. In Sec. 5, the dynamic coeffi-
cient is defined to quantify the effect of a moving load. In Sec. 6,
computational implementation of a slab response to a moving load
is formulated and the parametric study is conducted. In Sec. 7,
concluding remarks are made.

2 The Governing Equation and General Responses
Figure 1 shows a thin slab in an orthogonal x-y-z coordinate

system. Denote the displacement of the slab in the z direction as
W�x ,y , t�. Three assumptions are made to simplify the mathemati-
cal model of a thin slab. These assumptions are: �1� the strain
component �z in the perpendicular direction of the slab is suffi-
ciently small such that it can be ignored; �2� the stress components
�zx,�zy, and �z are far less than the other stress components; there-
fore, the deformation caused by �zx,�zy, and �z can be negligible;
and �3� the displacement parallel to the horizontal direction of the
slab is zero.

Let the reaction force from the viscoelastic foundation to the
slab be given by q�x ,y , t�=KW�x ,y , t�+C��x ,y , t� /�t �Kenney
�26�, Zaghloul et al. �29�, and Sun �12,34��. Here, K is the modu-
lus of the subgrade reaction and is assumed to be constant to
represent linear elasticity of the subgrade, and C is the damping
coefficient of the foundation. The well-known governing equation
for a Kirchhoff’s slab is �Shamalta and Metrikine �18� and Sun
�11,34��

D�2�2W�x,y,t� + KW�x,y,t� + C
�W�x,y,t�

�t
+ �h

�2

�t2W�x,y,t�

= F�x,y,t� �1�

where �2=�2 /�x2+�2 /�y2 is the Laplace operator, h is the thick-
ness of the slab, � is the density of the slab, D=Eh3 / �12�1
−�2�� is the stiffness of the slab; E and � are the Young’s modu-
lus of elasticity and Poisson ratio of the slab, respectively.

For the sake of seeking a steady-state solution, it is assumed
that the load be applied at time t=−� such that all transient effects
vanish. Equation �1� is a linear partial differential equation, and
can be solved using the approach of integral transformation. We
define the three-dimensional Fourier transform pair

f̃��� = F�f�x�� =�
−�

� �
−�

� �
−�

�

f�x�exp�− i�x�dx �2a�

f�x� = F−1� f̃���� = �2��−3�
−�

� �
−�

� �
−�

�

f̃���exp�i�x�d� �2b�

where x= �x ,y , t�, �= �� ,	 ,
�, F�·� and F−1�·� are Fourier trans-
form and its inversion, respectively. Since only the steady-state
solution is of interest, Fourier transform can be applied to both
sides of �1�:

D��2 + 	2�2W̃��� + KW̃��� + iC
W̃��� − �h
2W̃��� = F̃��� �3�

where F̃��� and W̃��� are the Fourier transform of F�x� and W�x�,
respectively. In the derivation of �3�, the following property of the
Fourier transform is used:

F�f �n��t�� = �i
�nF�f�t�� �4�

Equation �4� is an algebraic equation and the displacement re-
sponse in the transformed domain can be easily obtained by rear-
ranging the terms:

W̃��� = F̃����D��2 + 	2�2 + K + iC
 − �h
2�−1 �5�

The dynamic response W�x� in the original time-space domain can
be constructed as the inverse Fourier transform of �5�:

W�x� = �2��−3�
−�

� �
−�

� �
−�

�

exp�i�x�F̃����D��2 + 	2�2 + K + iC


− �h
2�−1d� �6�

Equation �6� is the dynamic displacement response of a thin slab
resting on a viscoelastic foundation subject to a general dynamic
load. Several special types of dynamic loads will be studied in
detail in the following section.

3 Response to a Special Type of Dynamic Load

3.1 Response to a Static Load. For a static concentrated
load, it can be expressed as

Fs�x� = P��x���y� �7�

Here, ��·� is the Dirac-delta function defined by

�
−�

�

��x − x0�f�x�dx = f�x0� �8�

The Fourier transform of Fs�x� is given by

F̃s��� =�
−�

� �
−�

� �
−�

�

P��x���y�exp�− i�x�dx = 2�P��
� �9�

Substituting �9� into �6� yields static displacement field under
point load �7�

Wstatic�x� = �2��−2P̄�
−�

� �
−�

�
exp�i��x + 	y��

��2 + 	2�2 + K̄
d�d	 �10�

where K̄=K /D. We define the coordinate transform x=r cos �, y
=r sin �, �= cos � and 	= sin �. Since sin � cos �
+cos � sin �=sin��+��, applying this relation and the Euler for-
mula exp�i��=cos �+ i sin � to �10� gives

Wstatic�x� = �2��−2P̄�
−�

� �
−�

�
cos�r sin�� + ���

4 + K̄
dd� �11�

It is known that the Bessel function can be expressed as J0�z�
= �2��−1�0

2� cos�z cos ��d� �Watson �35��, in which J0�·� is the
zeroth order Bessel function of the first kind. Adopting this rep-
resentation, �15� can be rewritten as

Fig. 1 An infinite slab on a viscoelastic foundation subjected
to a moving load
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Wstatic�x� = �2��−1P̄�
−�

�
J0�r�

4 + K̄
d �12�

This is exactly identical to the static solution given in Zhu et al.
�36�.

3.2 Response to a Quiescent Harmonic Load. A quiescent
harmonic point load can be expressed as

Fqh�x� = P��x���y�ei�t �13�

The Fourier transform of Fqh�x� is given by

F̃qh��� =�
−�

� �
−�

� �
−�

�

P��x���y�ei�t exp�− i�x�dx = 2�P��
 − ��

�14�

Substituting �14� into �6� yields the dynamic displacement field
under quiescent harmonic point load �13�

W�x� = �2��−2P�
−�

� �
−�

� �
−�

�
exp�i��x + 	y��

D��2 + 	2�2 + K + iC� − �h�2d�d	

�15�

3.3 Response to a Moving Constant Load. A moving con-
stant point load denoted by Fmc�x� can be expressed as

Fmc�x� = P��x − vt���y� �16�

The Fourier transform of the moving load F̃mc��� can be obtained
by taking a Fourier transform on both sides of �16�:

F̃mc��� =�
−�

� �
−�

� �
−�

�

P��x − vt���y�exp�− i�x�dx

= P�
−�

�

exp�− i��v + 
�t�dt = 2�P���v + 
� �17�

Substituting �17� into �6� yields the dynamic displacement field
under moving point load �16�

Wmc�x� = �2��−2P�
−�

� �
−�

�
exp�i��x + 	y��

D��2 + 	2�2 + K − iCv� − �hv2�2d�d	

�18�

3.4 Response to a Moving Harmonic Load. A moving har-
monic point load denoted by Fmh�x� can be expressed as

Fmh�x� = P��x − vt���y�ei�t �19�

The Fourier transform F̃mh��� of �19� is

F̃mh��� =�
−�

� �
−�

� �
−�

�

P��x − vt���y�ei�t exp�− i�x�dx

= P�
−�

�

exp�− i��v + 
 − ��t�dt = 2�P���v + 
 − ��

�20�
Here, the property of the Dirac-delta function �9� is utilized for the
evaluation of the above integrals. Substituting �10� into the gen-
eral solution �6� gives the dynamic pavement displacement re-
sponse Wmh�x� corresponding to the moving harmonic point load
�19�

Wmh�x� = �2��−3�
−�

� �
−�

� �
−�

�

exp�i�x�2�P���v + 
 − ���D��2 + 	2�2 + K + iC
 − �h
2�−1d�

=
P̄

�2��2�
−�

� �
−�

�
exp�i��x + 	y + �� − �v�t��

��2 + 	2�2 + K̄ + i�� − �v�C̄ − m̄�� − �v�2
d�d	 �21�

Clearly, a constant moving load can be treated as a special case
of a moving harmonic load by setting frequency �=0, while a
quiescent harmonic load can be treated as a special case of a
moving harmonic load as load speed v=0. In other words, Eqs.
�10�, �15�, and �18� are special cases of �21�. Without loss of
generality, in the following analysis, only �21� will be used for
further studies.

Knowing the vertical velocity and vertical acceleration of slab
is also paramount because these dynamic quantities can be con-
veniently measured using geophones �velocity transducers� and
accelerometers. The first and second partial derivatives of dis-
placement with respect to time are, respectively, the vertical ve-
locity and acceleration responses of the slab

Vmh�x� =
�

�t
Wmh�x�

=
iP̄

�2��2�
−�

� �
−�

� �� − �v�exp�i��x + 	y + �� − �v�t��

��2 + 	2�2 + K̄ + i�� − �v�C̄ − m̄�� − �v�2

d�d	 �22�

Amh�x� =
�2

�t2Wmh�x�

=
− P̄

�2��2�
−�

� �
−�

� �� − �v�2 exp�i��x + 	y + �� − �v�t��

��2 + 	2�2 + K̄ + i�� − �v�C̄ − m̄�� − �v�2

d�d	 �23�

where P̄= P /D, K̄=K /D, C̄=C /D, and m̄=�h /D. It is noted that
in the derivation of �22� and �23�, we used the exchangeability of
the partial differential operators and the double integration.

4 Critical Speed and Resonance Frequency
The dynamic displacement response of a slab to a moving har-

monic load is governed by the zeros of the denominator of the
integrand in �21�. In one-dimensional structures such as beams, it
has been both experimentally observed and theoretically proven
that there exists a critical speed and resonance frequency �Kenney
�26� and Sun �9,10,30�� at which the amplitude of displacement
response of the structure becomes infinity. In two-dimensional
structures such as slabs, critical speed and resonance frequency
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also exist, under which resonance occurs. Chen and Huang
�15,37� used the condition of the determinant of dynamic stiffness
matrix being zero to specify critical speed and resonance fre-
quency of the Timoshenko and Bernoulli-Euler beams. Dieterman
and Metrikine �38� took advantage of kinematic invariant to iden-
tify critical speed and resonance frequency of an elastic layer. In
this section, complex analysis will be used to specify critical
speed and resonance frequency for a Kirchhoff slab under a mov-
ing harmonic load.

When damping presents in a dynamic system, it dissipates vi-
bration energy. As a result, resonance cannot occur in dynamic
systems with damping or other energy absorbing mechanisms. To
study resonance, we need to investigate zeros of the denominator
of the integrant in �21� without including the damping term, which
corresponds to roots of the following equation:

��2 + 	2�2 + K̄ − m̄�� − ���2 = 0 �24�

Both � and 	 are variables for integration in �21�. Since Eq. �21�
involves double integration, the integration with respect to 	 is
evaluated first. To this end, we represent 	 in terms of � by solv-
ing �24�

	 j��� = �±��− �2�±��m̄�� − ���2 − K̄�1/2�1/2, j = 1, . . . ,4

�25�

It should be noted that � is real valued in �25�.
When applying the complex analysis to evaluate the integral

with respect to 	, the four roots of �25� become four poles in the
complex 	 plane. We construct a closed contour to surround these
poles. For Im�	��0, we select the closed contour in the upper
half 	 plane, while for Im�	��0, the lower half 	 plane. Due to
the length limitation of the paper, only the case of Im�	��0 is
presented here and the case of Im�	��0 can be derived in anal-
ogy. Applying the theorem of residue, Eq. �21� can be further
simplified to �ignoring the damping of the system� �Sun �11,12��

Wmh�x� = �8��−1iP̄ exp�i�t�

� 	
Im�	j��0

�
−�

�
exp�i��x − �t��exp�i	 j���y�

	 j����	 j
2��� + �2�

d� �26�

According to �25�, 	 j
2���+�2=0 is equivalent to K̄− m̄��−���2

=0 or ��− ��+ �K̄ / m̄�1/2� /����− ��− �K̄ / m̄�1/2� /��=0. This corre-
sponds to two first-order poles in a complex � plane. We can apply
the theorem of residue again to evaluate integral �26�, which re-
quires the poles specified by 	 j���=0 to be known. Note that � has
to be real valued; we only need to identify two real zeros of
	 j���=0. Substituting 	 j���=0 into �25�, it follows

g��� = �4 − m̄�2�2 + 2m̄��� − m̄�2 + K̄ = 0 �27�

In this paper, �27� is called the characteristic equation of a Kirch-
hoff slab and g��� is called the characteristic function.

The purpose of this section is not about the analytical evalua-
tion of �26�, which can be found in Sun �11,12�, but about the
investigation of critical speed and resonance frequency, which
correspond to high-order poles or zeros of characteristic function
g���. As complex roots of �27� must appear as a conjugate pair,
the number of real roots of �27� can only be two or four. A dupli-
cated real root or a second-order pole requires the first derivative
of g��� to be zero, whereas a fourth-order pole requires up to the
third derivative of g��� to be zero. The first, second, and third
derivatives of characteristic function g��� are listed below

g���� = 4�3 − 2m̄�2� + 2m̄�� = 0 �28�

g���� = 12�2 − 2m̄�2 = 0 �29�

g���� = 24� = 0 �30�

Clearly, simultaneous satisfaction of Eqs. �27�–�30� ensures the
existence of a fourth-order pole. From �30� it follows that the
fourth-order pole is �=0, which can only occur when �=0 �from

�28� and �29�� and �= �K̄ / m̄�1/2 �from �27��. Define natural fre-

quency as �0= �K̄ / m̄�1/2. The above derivation suggests that slab
resonance occurs when the load is a position-fixed harmonic load
with frequency �0.

Slab resonance may also occur when ��0 �a moving harmonic
load�, which corresponds to a second-order pole and requires si-
multaneous satisfaction of �27� and �28�. Mathematical manipula-
tion �27��4− �28��� leads to

− 2m̄�2�2 + 6m̄��� + 4�K̄ − m̄�2� = 0 �31�

The two roots of the above equation are

� =
3�

2�
±

�8m̄K̄ + m̄2�2�1/2

2m̄�
�32�

Mathematical manipulation �31�� �3�+���+ �28�� m̄�3 /2 leads
to

�m̄2�4 − 4K̄ − 14m̄�2��� − �m̄2�4 − 12�K̄ − m̄�2��� = 0 �33�

The real root of �33� is

� =
��m̄2�4 + 12K̄ − 12m̄�2�

��m̄2�4 − 4K̄ − 14m̄�2�
�34�

The second-order poles given by �32� and �34� should be identical
as they all satisfy Eqs. �27� and �28�.

It is noted that ��0 in �32� and �34�. Equalizing these two
equations leads to the condition at which slab resonance occurs:

3�

2�
±

�8m̄K̄ + m̄2�2�1/2

2m̄�
=

��m̄2�4 + 12K̄ − 12m̄�2�

��m̄2�4 − 4K̄ − 14m̄�2�
�35�

Let �= �1+8K̄ / �m̄�2��1/2. The above equation yields the relation-
ship between frequency-dependent critical speed �� and moving
load frequency

��
4 =

�14� − 18�m̄�2 + �4� − 36�K̄
�� − 1�m̄2 �36�

Substituting �=0 into �36� gives the critical speed �0
4=4K̄ / m̄2 for

a moving constant load, which is consistent with the result of Sun

Fig. 2 Critical speed versus moving load frequency
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�11�. Equation �36� can also be expressed in terms of �0
4 and natu-

ral frequency �0= �K̄ / m̄�1/2. To this end, we define the ratio �
=� /�0 and therefore �= �1+8/�2�1/2. From �36� we have

�� = 
 �14� − 18��2 + �4� − 36�
4�� − 1� � 1

4
�0 = ���0 �37�

where �� is a dimensionless coefficient representing the factor in
front of critical speed �0. Figure 2 shows a bifurcation relationship
between the ratio � and the coefficient ��.

According to �37�, it is clear that there is only one critical speed
for certain frequency range, while for some other frequency range
there might exist two critical speeds. These frequency ranges de-

pend on parameters K̄ and m̄. The existence of two possible criti-
cal speeds is consistent with the result obtained by Chen and
Huang �37� for a Timoshenko beam and a Bernoulli-Euler beam
and by Shamalta and Metrikine �18� for an elastic layer. Indeed,
the relationship �36� describing the critical speed and resonance
frequency is also valid for a Bernoulli-Euler beam whose param-

eters are specified as K̄=K / �EI� and m̄=m / �EI� with I being the
moment of inertia. The critical speed for a moving constant load is

also �0=�4 4K̄ / m̄2 for a Bernoulli-Euler beam �Sun �9��.

5 Dynamic Coefficient
It is of great interest to investigate the maximum displacement

response of a slab subject to a moving constant load. Let
max�Wstatic�x�� be the maximum displacement of a slab when the

moving load is a static load. It can be obtained from �10� by
setting x=y=0

max�Wstatic�x�� =�
−�

� �
−�

�
P̄

�2��2���2 + 	2�2 + K̄�
d�d	 �38�

Let max�Wmc�x�� be the maximum displacement of a slab on a
viscoelastic foundation subject to a moving constant load. Define
the dynamic coefficient as the ratio

dynamic coefficient = max�Wmc�x��/max�Wstatic�x�� �39�

Although the complexity of �39� does not permit analytical treat-
ment of the dynamic coefficient, which has to be done numeri-
cally, and will be evaluated in the next section, it is, however,
possible to approximate the dynamic coefficient based on funda-
mental physical principles. Here, we confine our attention to the
subsonic case where the speed of moving load is lower than the
critical speed �0 of a moving constant load �Sun �11,12�� as ve-
hicle speed on highways typically falls into such a subsonic speed
range.

Because of the damping effect, the maximum displacement
max�Wmc�x�� of a slab on a viscoelastic foundation should occur
behind the moving load. The maximum displacement, by defini-
tion, should be greater than the dynamic displacement of a slab at
�x=vt, y=0�, the point beneath the moving load:

max�Wmc�x�� � Wmc�xx=vt,y=0�

=�
−�

� �
−�

�
P̄

�2��2���2 + 	2�2 + K̄ − i�vC̄ − m̄v2�2�

d�d	 �40�

The equality is satisfied when the damping coefficient C=0.
Let max�Wm�x�� be the maximum displacement of a slab on an

elastic Winkler foundation �i.e., C=0� subject to the same moving

Table 1 Default values for parametric study

Parameter Default value Range of values

P 2.5�103 N 2.5�103 N
E 2.8�1010 N/m2 �2.8,3.2��1010 N/m2

K 2.3�108 N/m3 �1,10��108 N/m3

� 2.3�103 kg/m3 �1.75,22.4��103 kg/m3

h 0.25 m �0.1,0.4� m
� 0.25 0.25
C 1�107 N s/m3 �0,10��107 N s/m3

v 30 m/s �0,50� m/s
� 0 Hz �0,100� Hz

Fig. 3 Peak displacement of a slab to a moving constant load
at different speeds „�=0 Hz…

Fig. 4 Peak displacement of a slab to a moving load with dif-
ferent load frequencies „v=30 m/s…
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constant load. The necessary condition for a maximum displace-
ment to appear for this case is when the first-order partial deriva-
tive of the displacement with respect to time t becomes zero, i.e.,
�Wmc�x� /�tC=0=0, or equivalently,

�
−�

� �
−�

�
� exp�i���x − vt� + 	y��

D��2 + 	2�2 + K − �hv2�2d�d	 = 0

When x−vt=0 and y=0, the numerator and the denominator of
the integrand are an odd function and an even function of �, re-
spectively. A nontrivial solution of this integral equation is x=vt
and y=0. This suggests that the maximum displacement, given by
�41�, appears beneath the moving load and travels with the load at
the same speed. In other words,

max�Wm�x�� =�
−�

� �
−�

�
P̄

�2��2���2 + 	2�2 + K̄ − m̄v2�2�
d�d	

�41�

Under subsonic conditions, one could argue that because the
damping effect will absorb some energy, reducing the magnitude
of slab vibration, the maximum displacement of a slab on vis-
coelastic foundation �C�0� will be less than that of the same slab

on an elastic Winkler foundation �C=0�. This leads to
max�Wmc�x���max�Wm�x��. The equality sign is satisfied when
the damping coefficient C=0. Combining this inequality and �40�,
the dynamic coefficient defined by �39� can be limited to the fol-
lowing range:

Wmc�xx=vt,y=0�
max�Wstatic�x��

� dynamic coefficient =
max�Wmc�x��

max�Wstatic�x��

�
max�Wm�x��

max�Wstatic�x��
�42�

6 Numerical Computation

6.1 Formulation. In the degenerate situation where a slab
degrades to a beam, analytical treatment for obtaining a closed-
form solution can be carried out using complex analysis �Henrici
�39� and Sun �9,10,30��. However, due to the complexity of the
slab characteristic equation of the current problem, analytical
treatment will be very involved if not impossible. To better under-
stand the displacement response of a rigid pavement to a moving
load, it is of help to observe the dynamic response numerically. In
what follows, numerical methods will be formulated for
computation.

Let ��=2�� and 	�=2�	, and define the Galilean transform

Fig. 5 Dynamic responses of a slab to a moving load with large damping C=107 N s/m3 and
different load frequencies „left column: v=10 m/s; right column: v=30 m/s…
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x�=x−�t, y=y�, and t= t�. This transformation creates a moving coordinate system x�= �x� ,y� , t�� whose origin travels with the moving
load at the same speed. The displacement response �13� can be rewritten as

Wmh�x�� = P̄ei�t�
−�

� �
−�

�
exp�i2����x� + 	�y���

�2��4���2 + 	�2�2 + K̄ + i�� − 2���v�C̄ − m̄�� − 2���v�2
d��d	� �43�

Let the integrand be F��� ,	��. This function can then be decomposed into the real and imaginary parts as

F���,	�� = ����,	�� + i����,	�� �44�

����,	�� =
�2��4���2 + 	�2�2 + K̄ − m̄�2���v − ��2

��2��4���2 + 	�2�2 + K̄ − m̄�� − 2���v�2�2 + ��� − 2���v�C̄�2
�45a�

����,	�� =
− �2���v − ��C̄

��2��4���2 + 	�2�2 + K̄ − m̄�� − 2���v�2�2 + ��� − 2���v�C̄�2
�45b�

Given that K̄�0 and C̄�0, the denominator of the integrand is nonzero since �2��4���2+	�2�2+ K̄− m̄��−2���v�2 and ��
−2���v�C̄ cannot be zero simultaneously. Equation �43� can now be written as

Wmh�x�� = P̄ei�t�
−�

� �
−�

�

F���,	��exp�i2����x� + 	�y���d��d	� �46�

Fig. 6 Dynamic responses of a slab to a moving load at different speeds with large damping
C=107 N s/m3

„left column: �=0 Hz; right column: �=50 Hz…
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Discretization of �34� by letting d�� =��� and d	� =�	� leads
to

Wmh�xk�,yl��

= P̄ei�t	
m=0

M−1

	
n=0

N−1

F��m� ,	n��exp�i2���m� xk� + 	n�yl�������	�

= P̄ei�t����	�	
m=0

M−1

	
n=0

N−1

F�m���,n�	��

�exp�i2��mk����x� + nl�	��y��� �47�

where xk�=k�x�, yl�= l�y�, k=0, . . . ,M and l=0, . . . ,N. The sum-
mation �47� is exactly the definition of an inverse fast Fourier
transform �IFFT�, and therefore, can be efficiently evaluated. To
do so, follow the definition of a discrete fast Fourier transform
pair:

F�m,n� = FFT�f�k,l�� = 	
m=0

M−1

	
n=0

N−1

f�k,l�e−i2�nk/Me−i2�kn/N �48�

f�k,l� = IFFT�F�m,n�� =
1

MN 	
m=0

M−1

	
n=0

N−1

F�m,n�e
i2�mk

M e
i2�nl

N

�49�

Equation �47� can now be written as

Wmh�xk�,yl�� = P̄ei�t IFFT�F��m� ,	n���/�x��y� �50�

where �m� =m���, 	n�=n�	�, ����x�=1/M, �	��y�=1/N, and
IFFT �� is the inverse FFT. The benefit of �50� is that it permits
more efficient computation via the use of FFT.

It should be noted that the resulting dynamic responses are
indeed presented in the Galilean coordinate system, a moving co-
ordinate system. If one is interested in knowing the dynamic re-
sponse in a fixed coordinate system, all responses in a Galilean
coordinate system must be converted to the fixed coordinate sys-
tem. It should also be noted that Eq. �23� is not applicable for
computation of the slab acceleration under the load at x=vt and
y=0, since the integral in �23� is divergent. The order of differen-
tiation and integration may be changed only if the integral is uni-
formly convergent, which is not the case for the integral in Eq.
�22�. Indeed, the computation of acceleration of plate under the
load at x=vt and y=0 is not directly based on �23�. Rather, the

Fig. 7 Dynamic responses of a slab to a moving load at speed v=30 m/s with different damp-
ing coefficients „left column: �=0 Hz; right column: �=50 Hz…
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acceleration is obtained by numerically computing the derivative
of vertical velocity using the differencing method, while the ver-
tical velocity can be computed numerically using �22� or as a
derivative of dynamic displacement.

6.2 Parametric Studies. In this section, a parametric study is
conducted to uncover the spatial and temporal evolution of a
slab’s is response to a moving load. Table 1 lists default values
and ranges of parameters used in the numerical computation.
These parameters are typical material and structural properties of
highway and airport pavements.

Figure 3 shows peak displacement responses of a slab to a
moving load with four different damping coefficients: C=0, 105,
106, and 107 N s/m3, respectively. The observation point is set at
the origin of the coordinate system x=y=0. It can be seen that
damping has a significant effect on peak displacement. When
damping coefficients are small �e.g., less than 105 N s/m3�, peak
displacement increases as the speed increases. When damping co-
efficients are large �e.g., greater than 106 N s/m3�, peak displace-
ment decreases as speed increases.

Figure 4 shows peak displacement of a slab to a moving har-
monic load with four damping coefficients: C=0, 105, 106, and
107 N s/m3, respectively. The observation point is set at the origin
of the coordinate system x=y=0 and load speed v=30 m/s. For
small damping coefficients �e.g., less than 105N s/m3�, peak dis-

placement increases as frequencies increase. For large damping
coefficients �e.g., greater than 106 N s/m3�, peak displacement de-
creases as the frequencies increase.

Figure 5 shows the displacement, velocity, and acceleration re-
sponses of a slab to a point load moving at speed v=10 m/s and
v=30 m/s at six different load frequencies:�=0, 20, 40, 60, 80,
and 100 Hz, respectively. Other parameters are given in Table 1.
The observation point is set at the origin of the coordinate system
x=y=0. The shape of the displacement response to a moving con-
stant load ��=0 Hz� is significantly different from that of a mov-
ing harmonic load ���0 Hz�. Only one peak is observed in the
former, while there are several peaks in the latter, reflecting oscil-
lation patterns of responses. For a moving constant load, the dis-
placement response increases as the load approaches the observa-
tion point, reaches its maximum at the observation point, and
decays from the maximum to zero as the load leaves the observa-
tion point. The shapes of dynamic displacement response are
asymmetric with respect to time t=0 due to the damping effect.

In Fig. 5, slab responses to moving loads at speed v=10 m/s
and at v=30 m/s are mainly during �−0.3,0.3� s and
�−0.1,0.1� s, respectively. These are equivalent to a longitudinal
�−3,3� m vicinity of the observation point along the traveling
direction. The maximum displacement responses of a slab de-
crease as load frequencies increase. However, the maximum ve-

Fig. 8 3-D dynamic responses of a slab to a moving load at speed v=30 m/s with large
damping C=107 N s/m3

„left column: �=0 Hz; right column: �=50 Hz…
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locity and acceleration responses show significantly different pat-
terns. The higher the load frequency, the larger the peak velocity
and acceleration will be. The dynamic response of a slab under a
moving load at speed v=30 m/s shows less of an oscillation pat-
tern than its counterpart at speed v=10 m/s. It should be noted
that these results are obtained for large damping C=107 N s/m3.

Figure 6 shows the displacement, velocity, and acceleration re-
sponses of a slab to a moving load with frequencies �=0 Hz and
�=50 Hz at six different load speeds: v=0, 10, 20, 30, 40, and
50 m/s, respectively. The damping coefficient is also large at C
=107 N s/m3. The observation point is set at the origin of the
coordinate system; i.e., x=y=0. For a static load ��=0�, both
velocity and acceleration responses are zero, whereas the dis-
placement response remains a constant about 3.4�10−6 m, which
is greater than the dynamic displacement when the load is mov-
ing. As the load speed increases, the maximum displacement de-
creases while the maximum velocity and acceleration increase.
Furthermore, as the load speed increases, the time duration of
response gets shortened. For instance, when the load speed is v
=10 m/s, the time duration of response is approximate �
−0.4,0.4� s, but approximately �−0.1,0.2� s when the load speed
is v=30 m/s.

Because of the damping effect, it is observed from the left-top
diagram in Fig. 6 that for a moving load, it takes the dynamic
displacement less time �about 0.02 s� to reach its maximum from
zero than to vanish �about 0.3 s� from the maximum. The maxi-
mum displacement appears after the load passes through the ob-
servation point �t=0�. When reflected in space, this time delay
suggests that the maximum displacement occurs behind the mov-
ing load. The maximum acceleration seems to appear at t=0 in
time and x=0 in space, indicating that acceleration seems to be
less influenced by the damping effect. In the vicinity of the mov-
ing load, a positive response is observed, while outside this vicin-
ity, a negative response exists. A similar conclusion can be drawn
for a moving harmonic load with �=50 Hz.

Figure 7 shows the dynamic responses of a slab with different
damping coefficients at two load frequencies: �=0 Hz and �
=50 Hz. The load speed is v=30 m/s and the observation point is
at the origin of the coordinate system, i.e., x=y=0. Five levels of
the damping coefficient are studied: C=0, 105, 106, 107, and
108 N s/m3. Because of the damping effect, the shape of the dis-
placement response is asymmetric, as compared to slabs with elas-
tic foundation �no damping�. It can be seen from Fig. 7 that both
positive and negative displacements are observed in the vicinity of
time t=0, indicating that the slab experiences both compressive
and tensile stresses as the load passes over. For a constant moving
load, the maximum displacement response of a slab appears after
time t=0 due to the damping effect. The time lag between the
maximum displacement and time t=0 increases as the damping
coefficient increases. The amplitude of response decreases as the
damping coefficient increases, which applies to both moving con-
stant loads and moving harmonic loads. As the damping coeffi-
cient is small C�105 N s/m2, there is almost no distinguishable
difference between the response of a slab with and without
damping.

It is of interest to investigate the dynamic response when
viewed from a moving coordinate system specified by x�=x−vt
and y�=y. This moving coordinate system travels at the same
speed as the moving load and the origin of the moving coordinate
system passes through the origin of the fixed coordinate system at
time t=0. Figure 8 shows three-dimensional displacement, veloc-
ity, and acceleration responses of a slab in the moving coordinate
system to a single moving point load at load speed v=30 m/s and
damping coefficient C=107 N s/m3 with two load frequencies
�=0 Hz and �=50 Hz, respectively. Other parameters used in
the creation of Fig. 8 are listed in Table 1.

To study the effect of various parameters on the dynamic coef-
ficient of a slab, sensitivity analysis is conducted by varying one

parameter at a time while keeping other parameters in Table 1
unchanged. Figure 9 shows the effect of damping on the dynamic
coefficient. A general trend is that when the damping coefficient
increases, the dynamic coefficient decreases. However, when the
damping is very small, the dynamic coefficient exceeds unity
slightly since the peak displacement response increases as the
speed increases.

Because the damping coefficient affects the dynamic coefficient
considerably, two default values of the damping coefficient are
used. One is small damping C=1�105 N s/m3 and the other is
large damping C=1�107 N s/m3. Figures 10 and 11 summarize
the effects of parameters on the dynamic coefficient obtained from
the numerical computation. Other parameters are listed in Table 1.
At a small damping level, from Fig. 10 it can be seen that the
dynamic coefficient decreases as Young’s modulus E, slab thick-
ness h, and modulus of subgrade reaction K increase. The dy-

Fig. 9 Effect of damping coefficient on dynamic coefficient
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namic coefficient increases as the density of the slab � and load
speed v increase. At a large damping level, from Fig. 11 it can be
seen that the dynamic coefficient decreases as Young’s modulus E,
slab thickness h, modulus of subgrade reaction K, and load speed
v increase. The dynamic coefficient increases as the density of the
slab � increases. A noticeable feature is that at these two damping
levels, the dynamic coefficient seems to be linearly related to
Young’s modulus E and density of the slab �, and nonlinearly
related to other parameters. For a thin slab, the dynamic coeffi-
cient may exceed unity significantly.

7 Concluding Remarks
In this paper, integral transform and numerical analysis are used

to analyze the dynamic response of a slab caused by a moving
load with constant speed. The following concluding remarks can
be made from the analysis. The result of this paper can be used for
vehicle weigh-in-motion and highway infrastructure health moni-
toring using continuous measurement of pavement deflection.

• Critical speed and resonance frequency are related to each
other via Eq. �37�. There exists a bifurcation in critical
speed. One branch of critical speed increases as load fre-
quency increases, while the other branch of critical speed
decreases as load frequency increases. There are two critical
speeds when the load frequency is low, but only one critical
speed exists when the load frequency is high.

• A slab’s response to a moving load is only appreciable

within a small vicinity of the moving load. For the param-
eters used in this study, it is approximately within the
�−3,3� m neighborhood of the observation point along the
traveling direction. As the load speed increases, the time
duration of the nonzero slab response decreases.

• When damping is small, peak displacement increases as
load speed or load frequency increases. However, when
damping is large, peak displacement decreases as load speed
or load frequency increases.

• Dynamic displacement of a slab with damping subject to a
moving load is asymmetric with a longer right tail, as shown
in the left-top plot of Fig. 5. The response of a slab under a
moving load at speed v=30 m/s shows less oscillations
than that of a slab under a moving load at speed v
=10 m/s.

• The damping coefficient has a significant affect on the shape
of peak displacement of a slab. The peak displacement of a
slab with small �large� damping coefficient increases �de-
creases� as the load frequency and the load speed increase.

• Because of the damping effect, the maximum dynamic dis-
placement appears after the load passes through the obser-
vation point �t=0�. When reflected in space, this time lag
suggests that the maximum displacement occurs behind the
moving load. The maximum acceleration seems to appear at
t=0 in time and x=0 in space.

• When the damping coefficient is small, i.e., C
�105 N s/m2, there is almost no distinguishable difference

Fig. 10 Dynamic coefficient as a function of various parameters „C=1Ã105 N s/m3
…
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between the response of a slab with and without damping,
though there is a very slight increase in the dynamic coeffi-
cient. When the damping coefficient is not very small, the
dynamic coefficient decreases as the damping coefficient in-
creases.

• At a small damping level, the dynamic coefficient decreases
as Young’s modulus E, slab thickness h, and modulus of
subgrade reaction K increase, and increases as the density of
the slab � and load speed v increase. At a large damping
level, the dynamic coefficient decreases as Young’s modulus
E, slab thickness h, modulus of subgrade reaction K, and
load speed v increases, and increases as density of the slab �
increases. A linear relationship exists between the dynamic
coefficient and Young’s modulus E or density of the slab �.
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Extension of Stoney’s Formula
to Arbitrary Temperature
Distributions in Thin
Film/Substrate Systems
Current methodologies used for the inference of thin film stress through curvature mea-
surements are strictly restricted to stress and curvature states that are assumed to remain
uniform over the entire film/substrate system. By considering a circular thin film/
substrate system subject to nonuniform and nonaxisymmetric temperature distributions,
we derive relations between the film stresses and temperature, and between the plate
system’s curvatures and the temperature. These relations featured a “local” part that
involves a direct dependence of the stress or curvature components on the temperature at
the same point, and a “nonlocal” part that reflects the effect of temperature of other
points on the location of scrutiny. Most notably, we also derive relations between the
polar components of the film stress and those of system curvatures which allow for the
experimental inference of such stresses from full-field curvature measurements in the
presence of arbitrary nonuniformities. These relations also feature a “nonlocal” depen-
dence on curvatures making full-field measurements of curvature a necessity for the
correct inference of stress. Finally, it is shown that the interfacial shear tractions between
the film and the substrate are related to the gradients of the first curvature invariant and
can also be inferred experimentally. �DOI: 10.1115/1.2744035�

Keywords: nonuniform film temperatures and stresses, nonuniform substrate curvatures,
stress-curvature relations, nonlocal effects, interfacial shears

1 Introduction
Substrates formed of suitable solid-state materials may be used

as platforms to support various thin film structures. Integrated
electronic circuits, integrated optical devices and optoelectronic
circuits, microelectromechanical systems deposited on wafers,
three-dimensional electronic circuits, systems-on-a-chip struc-
tures, lithographic reticles, and flat panel display systems are ex-
amples of such thin film structures integrated on various types of
plate substrates.

The above-described thin film structures on substrates are often
made from a multiplicity of fabrication and processing steps �e.g.,
sequential film deposition, thermal anneal, and etch steps� and
often experience stresses caused by each of these steps. Examples
of known phenomena and processes that build up stresses in thin
films include, but are not limited to, lattice mismatch, chemical
reaction, doping by, e.g., diffusion or implantation, rapid deposi-
tion by evaporation or sputtering, and of course thermal treatment
�e.g., various thermal anneal steps�. The film stress build-up asso-
ciated with each of these steps often produces undesirable damage
�e.g., cracking, interface delamination� that may be detrimental to
the manufacturing process because of its cumulative effect on
process “yield” �1�. Known problems associated with thermal ex-
cursions, in particular, include stress-induced film cracking and
film/substrate delamination resulting during uncontrolled wafer
cooling that follows the many anneal steps.

The intimate relation between stress-induced failures and pro-
cess yield loss makes the identification of the origins of stress
build-up, the accurate measurement and analysis of stresses, and
the acquisition of information on the spatial distribution of

stresses a crucial step in designing and controlling processing
steps and in ultimately improving reliability and manufacturing
yield.

Stress changes in thin films following discrete process steps or
occurring during thermal excursions may be calculated in prin-
ciple from changes in the film/substrate systems curvatures or
“bow” based on analytical correlations between such quantities.
Early attempts to provide such correlations are well documented
�2�. Various formulations have been developed for this purpose
and most of these are essentially extensions of Stoney’s approxi-
mate plate analysis �3�.

Stoney used a plate system composed of a stress bearing thin
film of thickness hf, deposited on a relatively thick substrate of
thickness hs, and derived a simple relation between the curvature
��� of the system and the stress ���f�� of the film as follows:

��f� =
Eshs

2�

6hf�1 − �s�
�1.1�

In the above, the subscripts “f” and “s” denote the thin film and
substrate, respectively, and E and � are the Young’s modulus and
Poisson’s ratio, respectively. Equation �1.1� is called the Stoney
formula, and it has been extensively used in the literature to infer
film stress changes from experimental measurement of system
curvature changes �2�.

Stoney’s formula was derived for an isotropic “thin” solid film
of uniform thickness deposited on a much “thicker” plate sub-
strate based on a number of assumptions. Stoney’s assumptions
include the following: �1� Both the film thickness hf and the sub-
strate thickness hs are uniform and hf �hs�R, where R represents
the characteristic length in the lateral direction �e.g., system radius
R shown in Fig. 1�; �2� the strains and rotations of the plate sys-
tem are infinitesimal; �3� both the film and substrate are homoge-
neous, isotropic, and linearly elastic; �4� the film stress states are
in-plane isotropic or equibiaxial �two equal stress components in
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any two, mutually orthogonal in-plane directions� while the out-
of-plane direct stress and all shear stresses vanish; �5� the system’s
curvature components are equibiaxial �two equal direct curva-
tures� while the twist curvature vanishes in all directions; and �6�
all surviving stress and curvature components are spatially con-
stant over the plate system’s surface, a situation which is often
violated in practice.

The assumption of equibiaxial ��xx=�yy =� , �xy =�yx=0� and
spatially constant curvature �� independent of position� is equiva-
lent to assuming that the plate system would deform spherically
under the action of the film stress. If this assumption were to be
true, a rigorous application of Stoney’s formula would indeed fur-
nish a single film stress value. This value represents the common
magnitude of each of the two direct stresses in any two, mutually
orthogonal directions �i.e., �xx=�yy =��f�, �xy =�yx=0, ��f� inde-
pendent of position�. This is the uniform stress for the entire film
and it is derived from the measurement of a single uniform cur-
vature value that fully characterizes the system provided the de-
formation is indeed spherical.

Despite the explicitly stated assumptions of spatial stress and
curvature uniformity, the Stoney formula is often, arbitrarily, ap-
plied to cases of practical interest where these assumptions are
violated. This is typically done by applying Stoney’s formula
pointwise, and thus extracting a local value of stress from a local
measurement of the curvature of the system. This approach of
inferring film stress clearly violates the uniformity assumptions of
the analysis and, as such, its accuracy as an approximation is
expected to deteriorate as the levels of curvature nonuniformity
become more severe.

Following the initial formulation by Stoney, various researchers
have derived a number of extensions to relax some of the other
assumptions �other than the assumption of uniformity� made by
Stoney’s analysis. Such extensions of the initial formulation in-
clude relaxation of the assumption of equibiaxiality as well as the
assumption of small deformations/deflections. A biaxial form of
Stoney, appropriate for anisotropic film stresses, including differ-
ent stress values at two different directions and nonzero, in-plane
shear stresses, was derived by relaxing the assumption of curva-
ture equibiaxiality �2�. Related analyses treating discontinuous
films in the form of bare periodic lines �4� or composite films with
periodic line structures �e.g., bare or encapsulated periodic lines�
have also been derived �5–7�. These latter analyses have also re-
moved the assumption of equibiaxiality and have allowed the ex-
istence of three independent curvature and stress components in
the form of two, nonequal, direct components and one shear or
twist component. However, the uniformity assumption of all of
these quantities over the entire plate system was retained. In ad-

dition to the above, single, multiple, and graded films and sub-
strates have been treated in various “large” deformation analyses
�8–11�. These analyses have removed both the restrictions of an
equibiaxial curvature state as well as the assumption of infinitesi-
mal deformations. They have allowed for the prediction of kine-
matically nonlinear behavior and bifurcations in curvature states.
These bifurcations are transformations from an initially equibi-
axial to a subsequently biaxial curvature state that may be induced
by an increase in film stress beyond a critical level. This critical
level is intimately related to the systems aspect ratio, i.e., the ratio
of in-plane to thickness dimension and the elastic stiffness. These
analyses also retain the assumption of spatial curvature and stress
uniformity across the system. However, they allow for deforma-
tions to evolve from an initially spherical shape to an energetically
favored shape �e.g., ellipsoidal, cylindrical, or saddle shapes�
which features three different, still spatially constant, curvature
components �12�.

None of the above-discussed extensions of Stoney’s methodol-
ogy has relaxed the most restrictive of Stoney’s original assump-
tion of spatial uniformity, which does not allow either film stress
or curvature components to vary across the plate surface. This
crucial assumption is often violated in practice since film stresses
and the associated system curvatures are nonuniformly distributed
over the plate area. Huang and Rosakis �13� and Huang et al. �14�
have recently made progress to remove the two restrictive as-
sumptions of the Stoney analysis relating to spatial uniformity and
equibiaxiality. They have studied the cases of thin film/substrate
systems subject to nonuniform but axisymmetric temperature dis-
tribution T�r� and misfit strain �m�r�, respectively. Their results
show that the relations between film stresses and substrate curva-
tures feature not only a “local” part that involves a direct depen-
dence of stresses on curvatures at the same point, but also a “non-
local” part which reflects the effect of curvatures at other points
on the location of scrutiny. The “nonlocal” effect comes into play
in the axisymmetric analysis via the average curvature in the thin
film.

The main purpose of the present paper is to remove the two
restrictive assumptions of the Stoney analysis relating to spatial
uniformity and equibiaxiality for the general case of a thin film/
substrate system subject to arbitrary temperature distribution
T�r ,�� whose presence will create a nonaxisymmetric stress and
curvature field as well as arbitrarily large stress and curvature
gradients. Such a nonuniform temperature field may arise in the
processing or application of the thin film/substrate system. Our
goal is to relate film stresses and system curvatures to the tem-
perature distribution and to ultimately derive a relation between
the film stresses and the system curvatures for general nonaxisym-
metric temperature distributions. Such a relation would allow for
the accurate experimental inference of film stress from full-field
and real-time curvature measurements that may occur during or
after thermal processing. The full-field curvature measurements
�e.g., �15��, together with the present study, provide the stress field
in the film.

2 Governing Equations
A thin film deposited on a substrate is subject to arbitrary tem-

perature distribution T�r ,��, where r and � are the polar coordi-
nates �Fig. 1�. The thin film and substrate are circular in the lateral
direction and have a radius R.

The thin-film thickness hf is much less than the substrate thick-
ness hs, and both are much less than R; i.e., hf �hs�R. The
Young’s modulus, Poisson’s ratio, and coefficient of thermal ex-
pansion of the film and substrate are denoted by Ef, � f, � f, Es, �s,
and �s, respectively. The substrate is modeled as a plate since it
can be subjected to bending, and hs�R. The thin film is modeled
as a membrane which cannot be subject to bending due to its
small thickness hf �hs.

Fig. 1 A schematic diagram of the thin film/substrate system,
showing the cylindrical coordinates „r ,� ,z…
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Let ur
�f� and u�

�f� denote the displacements in the radial �r� and
circumferential ��� directions. The strains in the thin film are

�rr =
�ur

�f�

�r
, ��� =

ur
�f�

r
+

1

r

�u�
�f�

��

and

�r� =
1

r

�ur
�f�

��
+

�u�
�f�

�r
−

u�
�f�

r

The stresses in the thin film can be obtained from the linear
thermo-elastic constitutive model as

�rr =
Ef

1 − � f
2� �ur

�f�

�r
+ � f�ur

�f�

r
+

1

r

�u�
�f�

��
� − �1 + � f�� fT�

��� =
Ef

1 − � f
2�� f

�ur
�f�

�r
+

ur
�f�

r
+

1

r

�u�
�f�

��
− �1 + � f�� fT� �2.1�

�r� =
Ef

2�1 + � f�
�1

r

�ur
�f�

��
+

�u�
�f�

�r
−

u�
�f�

r
�

The membrane forces in the thin film are

Nr
�f� = hf�rr N�

�f� = hf��� Nr�
�f� = hf�r� �2.2�

It is recalled that, for uniform temperature distribution T
=constant, the normal and shear stresses across the thin film/
substrate interface vanish except near the free edge r=R; i.e.,
�zz=�rz=�r�=0 at z=hs /2 and r	R. For nonuniform temperature
distribution T=T�r ,��, the shear stress �rz and ��z at the interface
may not vanish anymore, and are denoted by 
r and 
�, respec-
tively. It is important to note that the normal stress traction �zz
still vanishes �except near the free edge r=R� because the thin
film cannot be subject to bending. The equilibrium equations for
the thin film, accounting for the effect of interface shear stresses 
r
and 
�, become

�Nr
�f�

�r
+

Nr
�f� − N�

�f�

r
+

1

r

�Nr�
�f�

��
− 
r = 0

�2.3�
�Nr�

�f�

�r
+

2

r
Nr�

�f� +
1

r

�N�
�f�

��
− 
� = 0

The substitution of Eqs. �2.1�–�2.3� yields the following govern-
ing equations for ur

�f�, u�
�f�, 
r and 
�

�2ur
�f�

�r2 +
1

r

�ur
�f�

�r
−

ur
�f�

r2 +
1 − � f

2

1

r2

�2ur
�f�

��2 +
1 + � f
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1

r

�2u�
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�r � �

−
3 − � f
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r2

�u�
�f�

��
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1 − � f
2

Efhf

r + �1 + � f�� f
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�2ur
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Let ur
�s� and u�

�s� denote the displacements in the radial �r� and
circumferential ��� directions, respectively, at the neutral axis �z
=0� of the substrate, and w the displacement in the normal �z�
direction. It is important to consider w since the substrate can be
subject to bending and is modeled as a plate. The strains in the
substrate are given by

�rr =
�ur

�s�

�r
− z

�2w

�r2

��� =
ur

�s�

r
+
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The stresses in the substrate can then be obtained from the linear
thermo-elastic constitutive model as

�rr =
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1 − �s
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The forces and bending moments in the substrate are
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The shear stresses 
r and 
� at the thin film/substrate interface
are equivalent to the distributed forces 
r in the radial direction
and 
� in the circumferential direction, and bending moments
�hs /2�
r and �hs /2�
� applied at the neutral axis �z=0� of the
substrate. The in-plane force equilibrium equations of the sub-
strate then become
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The out-of-plane moment and force equilibrium equations are
given by
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� = 0

�Qr

�r
+

Qr

r
+

1

r

�Q�

��
= 0 �2.11�

where Qr and Q� are the shear forces normal to the neutral axis.
The substitution of Eq. �2.7� into Eq. �2.9� yields the following
governing equations for ur

�s�, u�
�s�, and 
:

�2ur
�s�

�r2 +
1

r

�ur
�s�

�r
−

ur
�s�

r2 +
1 − �s

2

1

r2

�2ur
�s�

��2 +
1 + �s

2

1

r

�2u�
�s�

�r � �

−
3 − �s

2

1

r2

�u�
�s�

��
= −

1 − �s
2

Eshs

r + �1 + �s��s

�T

�r
�2.12�

1 + �s

2

1

r

�2ur
�s�

�r � �
+

3 − �s

2

1

r2

�ur
�s�

��
+

1 − �s

2
� �2u�

�s�

�r2 +
1

r

�u�
�s�

�r
−

u�
�s�

r2 �
+

1

r2

�2u�
�s�

��2 = −
1 − �s

2

Eshs

� + �1 + �s��s

1

r

�T

��

Elimination of Qr and Q� from Eqs. �2.10� and �2.11�, in conjunc-
tion with Eq. �2.8�, gives the following governing equation for w
�and 
�

�2��2w� =
6�1 − �s

2�
Eshs

2 � �
r

�r
+


r

r
+

1

r

�
�

��
� �2.13�

where

�2 =
�2

�r2 +
1

r

�

�r
+

1

r2

�2

��2

The continuity of displacements across the thin film/substrate
interface requires

ur
�f� = ur

�s� −
hs

2

�w

�r
, u�

�f� = u�
�s� −

hs

2

1

r

�w

��
�2.14�

Equations �2.4� and �2.12�–�2.14� constitute seven ordinary differ-
ential equations for seven variables, namely ur

�f�, u�
�f�, ur

�s�, u�
�s�, w,


r, and 
�. We discuss below how to decouple these seven equa-
tions under the limit hf /hs�1 such that we can solve ur

�s�, u�
�s�

first, then ur
�f� and u�

�f�, followed by 
r and 
�, and finally w.
�i� Elimination of 
r and 
� from force equilibrium equations

�2.4� for the thin film and �2.12� for the substrate yields two equa-
tions for ur

�f�, u�
�f�, ur

�s�, and u�
�s�. For hf /hs�1, ur

�f� and u�
�f� disap-

pear in these two equations, which become the following govern-
ing equations for ur

�s� and u�
�s� only:

�2ur
�s�

�r2 +
1

r

�ur
�s�

�r
−

ur
�s�

r2 +
1 − �s

2

1

r2

�2ur
�s�

��2 +
1 + �s

2

1

r

�2u�
�s�

�r � �

−
3 − �s

2

1

r2

�u�
�s�

��
= �1 + �s��s

�T

�r
+ O�hf

hs
�

�2.15�

1 + �s

2

1

r

�2ur
�s�

�r � �
+

3 − �s

2

1

r2

�ur
�s�

��
+

1 − �s

2
� �2u�

�s�

�r2 +
1

r

�u�
�s�

�r
−

u�
�s�

r2 �
+

1

r2

�2u�
�s�

��2 = �1 + �s��s

1

r

�T

��
+ O�hf

hs
�

�ii� Elimination of ur
�f� and u�

�f� from the continuity condition
�2.14� and equilibrium equation �2.4� for the thin film gives 
r and

� in terms of ur

�s� and w. Their substitution into the moment
equilibrium equation �2.13� yields the governing equation for the
normal displacement w, from which it can be shown that w is on
the order of hf /hs, i.e.,

w = O�hf

hs
� �2.16�

Equation �2.16� and the continuity condition �2.14� then give the
displacements ur

�f� and u�
�f� in the thin film as

ur
�f� = ur

�s� + O�hf

hs
�, u�

�f� = u�
�s� + O�hf

hs
� �2.17�

�iii� The equilibrium equation �2.4� for the thin film gives the
interface shear stresses in terms of ur

�s� and u�
�s� as


r =
Efhf

1 − � f
2	�s − � f

2
� 1

r2

�2ur
�s�

��2 −
1

r

�2u�
�s�

�r � �
−

1

r2

�u�
�s�

��
�

+ ��1 + �s��s − �1 + � f�� f�
�T

�r
+ O�hf

hs
�


�2.18�


� =
Efhf

1 − � f
2�

�s − � f

2
�−

1

r

�2ur
�s�

�r � �
+

1

r2

�ur
�s�

��
+

�2u�
�s�

�r2 +
1

r

�u�
�s�

�r
−

u�
�s�

r2 �
+ ��1 + �s��s − �1 + � f�� f�

1

r

�T

��
+ O�hf

hs
� 

where Eq. �2.15� has been used.
�iv� The displacement w is determined from the moment equi-

librium equation �2.13� by eliminating 
r and 
� using Eq. �2.18�.
It can be verified that the resulting w is indeed on the order of
hf /hs as suggested in Eq. �2.16�.

We expand the arbitrary nonuniform temperature distribution
T�r ,�� to the Fourier series,

T�r,�� = �
n=0

�

Tc
�n��r�cos n� + �

n=0

�

Ts
�n��r�sin n� �2.19�

where

Tc
�0��r� =

1

2�
�

0

2�

T�r,��d�, Tc
�n��r� =

1

�
�

0

2�

T�r,��cos n�d�

�n  1�

and

Ts
�n��r� =

1

�
�

0

2�

T�r,��sin n�d� �n  1�

Without losing generality, we focus on the cos n� term here. The
corresponding displacements and interface shear stresses can be
expressed as

ur
�s� = ur

�sn��r�cos n�, u�
�s� = u�

�sn��r�sin n�, w = w�n��r�cos n�

�2.20�

r = 
r

�n��r�cos n�, 
� = 
�
�n��r�sin n�

Equation �2.15� then gives two ordinary differential equations for
ur

�sn� and u�
�sn�, which have the general solution
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	ur
�sn�

u�
�sn� 
 = �1 − �s −

1 + �s

2
n

1 + �s

2
n + 2 �A0rn+1 +

�s

4�n + 1�
1 + �s

1 − �s
rTc

�n��
+ 	1

1

 �s

4�n + 1�
1 + �s

1 − �s
	− �1 − �s −

n

2
�1 + �s��rTc

�n�

+ 2�1 − �s��n + 1�
1

rn+1�
0

r

�1+nTc
�n����d�


− �1 − �s +
1 + �s

2
n

1 + �s

2
n − 2  �s

4�n − 1�
1 + �s

1 − �s
rTc

�n�

+ 	− 1

1

D0rn−1 − 	− 1

1

 �s

4�n − 1�
1 + �s

1 − �s

�� �1 − �s +
n

2
�1 + �s��rTc

�n�

− 2�1 − �s��n − 1�rn−1�
r

R

�1−nTc
�n����d�

+ O�hf

hs
� �2.21�

where we have used the condition that the displacements are finite
at the center r=0, and A0 and D0 are constants to be determined.

The interface shear stresses are obtained from Eq. �2.18� as


r
�n� =

Efhf

1 − � f
2	��1 + �s��s − �1 + � f�� f�

dTc
�n�

dr

− 2��s − � f�n�n + 1�A0rn−1 + O�hf

hs
�


�2.22�


�
�n� =

Efhf

1 − � f
2	− ��1 + �s��s − �1 + � f�� f�

n

r
Tc

�n�

+ 2��s − � f�n�n + 1�A0rn−1 + O�hf

hs
�


The normal displacement w is determined from Eq. �2.13� as

w�n� = A1rn+2 + B1rn −
3

n

1 − �s
2

Eshs
2

Efhf

1 − � f
2 ��1 + �s��s − �1 + � f�� f�

��rn�
r

R

�1−nTc
�n����d� + r−n�

0

r

�n+1Tc
�n����d�� + O�hf

2

hs
2�

�2.23�

where we have used the condition that the displacement w is finite
at the center r=0, and A1 and B1 are constants to be determined.

3 Boundary Conditions
The first two boundary conditions at the free edge r=R require

that the net forces vanish:

Nr
�f� + Nr

�s� = 0 and Nr�
�f� + Nr�

�s� = 0 at r = R �3.1�

which give A0 and D0 as

A0 =
�s

R2n+2�
0

R

�n+1Tc
�n����d� + O�hf

hs
�

D0 = −
n + 1

2R2n �1 + �s��s�
0

R

�n+1Tc
�n����d� + O�hf

hs
� �3.2�

under the limit hf /hs�1. The other two boundary conditions at
the free edge r=R are the vanishing of net moments, i.e.,

Mr −
hs

2
Nr

�f� = 0 and Qr −
1

r

�

��
�Mr� −

hs

2
Nr�

�f�� = 0 at r = R

�3.3�

which give A1 and B1 as

A1 = 3
Efhf

1 − � f
2

1 − �s
2

Eshs
2 ��1 + � f�

1 − �s

3 + �s
��s − � f�

− ��s − � f��s� 1

R2n+2�
0

R

�n+1Tc
�n����d� + O�hf

2

hs
2�

�3.4�

B1 = −
n + 1

n
R2A1 + O�hf

2

hs
2�

It is important to point out that the boundary conditions can
also be established from the variational principle �e.g., �11��. The
total potential energy in the thin film/substrate system with the
free edge at r=R is

� =�
0

R

rdr�
0

2�

d��
−

hs

2

hs

2
+hf

Udz �3.5�

where U is the strain energy density which gives �U /��rr=�rr,
�U /����=���, and �U /��r�=�r�. For constitutive relations in
Eqs. �2.1� and �2.6�, we obtain

U =
E

2�1 − �2���rr
2 + ���

2 + 2��rr��� +
1 − �

2
�r�

2

− 2�1 + ���T��rr + ����� �3.6�

where E, �, and � take their corresponding values in the thin film
�i.e., Ef, � f, and � f for hs /2+hf zhs /2� and in the substrate
�i.e., Es, �s, and �s for hs /2z−hs /2�. For the displacement
fields in Sec. 2 and the associated strain fields, the potential en-
ergy � in Eq. �3.5� becomes a quadratic function of parameters
A0, D0, A1, and B1. The principle of minimum potential energy
requires

��

�A0
= 0

��

�D0
= 0

��

�A1
= 0

��

�B1
= 0 �3.7�

It can be shown that, as expected in the limit hf /hs�1, the above
four conditions in Eq. �3.7� are equivalent to the vanishing of net
forces in Eq. �3.1� and net moments in Eq. �3.3�.

4 Thin Film Stresses and Substrate Curvatures
We provide the general solution that includes both cosine and

sine terms in this section. The substrate curvatures are

�rr =
�2w

�r2 ��� =
1

r

�w

�r
+

1

r2

�2w

��2 �r� =
�

�r
�1

r

�w

��
� �4.1�

The sum of substrate curvatures is related to the temperature by
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�rr + ��� = 12
Efhf

1 − � f

1 − �s

Eshs
2 	��s − � f�T + � �1 + �s�2

2�1 + � f�
− 1��s�T

− T� +
�1 − �s�

2
� f�T − T� + �1 + �s��1 − �s

3 + �s
��s − � f�

−
�s − � f

1 + � f
�s��

n=1

�

�n + 1�
rn

R2n+2�cos n��
0

R

�n+1Tc
�n�

����d� + sin n��
0

R

�n+1Ts
�n����d��
 �4.2�

where T= �1/�R2���AT�� ,��dA is the average temperature over
the entire area A of the thin film, dA=�d�d�, and T is also related
to Tc

�0� by T= �2/R2��0
R�Tc

�0����d�. The difference between two
curvatures ��rr−���� and the twist �r� are given by

�rr − ��� = 6
Efhf

1 − � f
2

1 − �s
2

Eshs
2 ��1 + �s��s − �1 + � f�� f�
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2
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0

r
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�0�d�

− �
n=1

�
n + 1

rn+2 �cos n��
0

r

�n+1Tc
�n�d�

+ sin n��
0

r

�n+1Ts
�n�d��

− �
n=1

�

�n − 1�rn−2�cos n��
r

R
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�n�d�

+ sin n��
r

R

�1−nTs
�n�d��� + 6

Efhf
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2
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2

Eshs
2

1

3 + �s

���1 − �s���1 + �s��s − �1 + � f�� f�

− 4��s − � f��s��
n=1

�
n + 1

Rn+2 �n� r

R
�n

− �n − 1�� r

R
�n−2�

��cos n��
0

R

�n+1Tc
�n�d� + sin n��

0

R

�n+1Ts
�n�d��

�4.3�

�r� = 3
Efhf

1 − � f
2

1 − �s
2

Eshs
2 ��1 + �s��s − �1 + � f�� f�

��− �
n=1

�
n + 1

rn+2 �sin n��
0

r

�n+1Tc
�n�d�

− cos n��
0

r

�n+1Ts
�n�d��

+ �
n=1

�

�n − 1�rn−2�sin n��
r

R

�1−nTc
�n�d�

− cos n��
r

R

�1−nTs
�n�d��� − 3

Efhf

1 − � f
2

1 − �s
2

Eshs
2

1

3 + �s
��1 − �s�

���1 + �s��s − �1 + � f�� f�

− 4��s − � f��s��
n=1

�
n + 1

Rn+2 �n� r

R
�n

− �n − 1�� r

R
�n−2�
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0

R
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�n�d� − cos n��

0

R

�n+1Ts
�n�d�� �4.4�

The stresses in the thin film are obtained from Eq. �2.1�. Spe-
cifically, the sum of stresses �rr

�f�+���
�f� is related to the temperature

by

�rr
�f� + ���

�f� =
Ef

1 − � f
�2��s − � f�T − �1 − �s��s�T − T�

+ 2�1 − �s��s�
n=1

�
n + 1

R2n+2rn�cos n��
0

R

�n+1Tc
�n�d�

+ sin n��
0

R

�n+1Ts
�n�d��� �4.5�

The difference between stresses, �rr
�f�−���

�f�, and shear stress �r�
�f�

are given by

�rr
�f� − ���

�f� =
Ef

1 + � f
�1 + �s��s	T −

2

r2�
0

r

�Tc
�0�d�

− �
n=1

�
n + 1

rn+2 �cos n��
0

r

�n+1Tc
�n�d�

+ sin n��
0

r

�n+1Ts
�n�d��

− �
n=1

�

�n − 1�rn−2�cos n��
r

R

�1−nTc
�n�d�

+ sin n��
r

R

�1−nTs
�n�d�� − �

n=1

�
n + 1

Rn+2 �n� r

R
�n

− �n − 1�� r

R
�n−2��cos n��

0

R

�n+1Tc
�n�d�

+ sin n��
0

R

�n+1Ts
�n�d��
 �4.6�

�r�
�f� =

Ef

2�1 + � f�
�1 + �s��s	− �

n=1

�
n + 1

rn+2 �sin n��
0

r

�n+1Tc
�n�d�

− cos n��
0

r

�n+1Ts
�n�d��

+ �
n=1

�

�n − 1�rn−2�sin n��
r

R

�1−nTc
�n�d�

− cos n��
r

R

�1−nTs
�n�d�� + �

n=1

�
n + 1

Rn+2 �n� r

R
�n

− �n − 1�� r

R
�n−2��sin n��

0

R
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− cos n��
0

R

�n+1Ts
�n�d��
 �4.7�
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The interface shear stresses 
r and 
� are related to the tempera-
ture by


r =
Efhf

1 − � f
2���1 + �s��s − �1 + � f�� f�

�T

�r
− 2��s − � f��s�

n=1

�

n�n

+ 1�
rn−1

R2n+2�cos n��
0

R

�n+1Tc
�n�d� + sin n��

0

R

�n+1Ts
�n�d���

�4.8�


� =
Efhf

1 − � f
2	��1 + �s��s − �1 + � f�� f�

1

r

�T

��
+ 2��s − � f��s�

n=1

�

n�n

+ 1�
rn−1

R2n+2�sin n��
0

R

�n+1Tc
�n�d� − cos n��

0

R

�n+1Ts
�n�d��


�4.9�

For uniform temperature distribution T=constant, the curva-
tures in the substrate obtained from Eqs. �4.2�–�4.4� become

� = �rr = ��� = 6
Efhf

1 − � f

1 − �s

Eshs
2 ��s − � f�T

The stresses in the thin film obtained from Eqs. �4.5�–�4.7� be-
come

��f� = �rr
�f� = ���

�f� =
Ef

1 − � f
��s − � f�T

For this special case only, both stress and curvature states become
equibiaxial. The elimination of temperature T from the above two
equations yields a simple relation ��f�= �Eshs

2 /6�1−�s�hf��, which
is exactly the Stoney formula in Eq. �1.1�, and it has been used to
estimate the thin-film stress ��f� from the substrate curvature �, if
the temperature, stress, and curvature are all constant and if the
plate system shape is spherical. In the following, we extend such
a relation for arbitrary nonaxisymmetric temperature distribution.

5 Extension of Stoney Formula for Nonaxisymmetric
Temperature Distribution

The stresses and curvatures are all given in terms of tempera-
ture in the previous section. We extend the Stoney formula for
arbitrary nonuniform and nonaxisymmetric temperature distribu-
tion in this section by establishing the direct relation between the
thinfilm stresses and substrate curvatures.

We first define the coefficients Cn and Sn related to the substrate
curvatures by

Cn =
1

�R2��
A

��rr + ������

R
�n

cos n�dA

�5.1�

Sn =
1

�R2��
A

��rr + ������

R
�n

sin n�dA

where the integration is over the entire area A of the thin film, and
dA=�d�d�. Since both the substrate curvatures and film stresses
depend on the temperature T, elimination of temperature gives the
film stress in terms of substrate curvatures by

�rr
�f� − ���

�f� =
Eshs

2

1 − �s

1 − � f

6hf

�s

�1 + �s��s − �1 + � f�� f
	�rr − ��� − �
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�n

+ 1��n� r

R
�n

− �n − 1�� r

R
�n−2��Cncos n� + Snsin n��


�5.2�
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1 − �s

1 − � f

6hf
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�1 + �s��s − �1 + � f�� f
	�r� +

1

2�
n=1
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�n + 1�

��n� r

R
�n

− �n − 1�� r

R
�n−2��Cn sin n� − Sn cos n��


�5.3�

�rr
�f� + ���

�f� =
Eshs

2

6hf�1 − �s�
	�rr + ��� + �1 − �s

1 + �s

−
�1 − � f��s

�1 + �s��s − �1 + � f�� f
���rr + ��� − �rr + ����

− �1 − �s

1 + �s
−

2�1 − � f��s

�1 + �s��s − �1 + � f�� f
��

n=1

�

�n + 1�

�� r

R
�n

�Cn cos n� + Sn sin n��
 �5.4�

where �rr+���=C0= �1/�R2���A��rr+����dA is the average cur-
vature over entire area A of the thin film. Equations �5.2�–�5.4�
provide direct relations between individual film stresses and sub-
strate curvatures. It is important to note that stresses at a point in
the thin film depend not only on curvatures at the same point
�local dependence�, but also on the curvatures in the entire sub-
strate �nonlocal dependence� via the coefficients Cn and Sn.

The interface shear stresses 
r and 
� can also be directly re-
lated to substrate curvatures via


r =
Eshs

2

6�1 − �s
2�� �

�r
��rr + ���� −

1 − �s

2R �
n=1

�

n�n + 1��Cn cos n�

+ Sn sin n��� r

R
�n−1� �5.5�


� =
Eshs

2

6�1 − �s
2�� 1

r

�

��
��rr + ���� +

1 − �s

2R �
n=1

�

n�n + 1��Cn sin n�

− Sn cos n��� r

R
�n−1� �5.6�

This provides a way to estimate the interface shear stresses from
the gradients of substrate curvatures. It also displays a nonlocal
dependence via the coefficients Cn and Sn.

Since interfacial shear stresses are responsible for promoting
system failures through delamination of the thin film from the
substrate, Eqs. �5.5� and �5.6� have particular significance. They
show that such stresses are related to the gradients of �rr+��� and
not to its magnitude, as might have been expected of a local,
Stoney-like formulation. The implementation value of Eqs. �5.5�
and �5.6� is that it provides an easy way of inferring these special
interfacial shear stresses once the full-field curvature information
is available. As a result, the methodology also provides a way to
evaluate the risk of and to mitigate such important forms of fail-
ure. It should be noted that for the special case of spatially con-
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stant curvatures, the interfacial shear stresses vanish as is the case
for all Stoney-like formulations described in Sec. 1.

It can be shown that the relations between the film stresses and
substrate curvatures given in the form of infinite series in Eqs.
�5.2�–�5.4� can be equivalently expressed in the form of integra-
tion as

�rr
�f� − ���

�f� =
Eshs

2

1 − �s

1 − � f

6hf

�s

�1 + �s��s − �1 + � f�� f

���rr − ��� −
1

�R2��
A

��rr + ����

�

�

R
Fminus� r

R
,
�

R
,� − ��

�1 − 2
�r

R2 cos�� − �� +
�2r2

R4 �3
dA �5.7�

�r�
�f� =

Eshs
2

1 − �s

1 − � f

6hf

�s

�1 + �s��s − �1 + � f�� f��r� −
1

2

1

�R2��
A

��rr

+ ����

�

R
Fshear� r

R
,
�

R
,� − ��

�1 − 2
�r

R2 cos�� − �� +
�2r2

R4 �3
dA �5.8�

�rr
�f� + ���

�f� =
Eshs

2

6hf�1 − �s���rr + ��� + �1 − �s

1 + �s

−
�1 − � f��s

�1 + �s��s − �1 + � f�� f
���rr + ��� − �rr + ����

− �1 − �s

1 + �s
−

2�1 − � f��s

�1 + �s��s − �1 + � f�� f
� r

�R3��
A

��rr

+ ����

�

R
Fplus� r

R
,
�

R
,� − ��

�1 − 2
�r

R2 cos�� − �� +
�2r2

R4 �4dA �5.9�

where functions Fminus, Fshear, and Fplus are given by

Fminus�r1,�1,�1� = − r1
2�1�6 + 9�1

2 + r1
2�1

4� + r1�2 + 9�1
2 + 6r1

2�1
2

+ 6r1
2�1

4�cos �1 − �1�3 + 3r1
2�1

2 + 2r1
4�1

2�cos 2�1

+ r1�1
2cos 3�1

Fshear�r1,�1,�1� = r1�2 + 9�1
2 − 6r1

2�1
2�sin �1 − �1�3 + 3r1

2�1
2

− 2r1
4�1

2�sin 2�1 + r1�1
2sin 3�1 �5.10�

Fplus�r1,�1,�1� = 2�1 + 2r1
2�1

2�cos �1 − r1�1 cos 2�1

− r1�1�4 + r1
2�1

2�
The interface shear stresses can also be related to substrate

curvatures via integrals as


r =
Eshs

2

6�1 − �s
2�� �

�r
��rr + ���� −

1 − �s

�R3 ��
A

��rr

+ ����

�

R
Fradial� r

R
,
�

R
,� − ��

�1 − 2
�r

R2 cos�� − �� +
�2r2

R4 �3
dA �5.11�


� =
Eshs

2

6�1 − �s
2�� 1

r

�

��
��rr + ���� −

1 − �s

�R3 ��
A

��rr

+ ����

�

R
Fcircumferential� r

R
,
�

R
,� − ��

�1 − 2
�r

R2 cos�� − �� +
�2r2

R4 �3
dA �5.12�

where

Fradial�r1,�1,�1� = �1 + 3r1
2�1

2�cos �1 − r1�1�3 + r1
2�1

2 cos 2�1�
�5.13�

Fcircumferential�r1,�1,�1� = �1 − 3r1
2�1

2� sin �1 + r1
3�1

3 sin 2�1

Finally it should be noted that Eq. �5.4� also reduces to Stoney’s
result for the case of spatial curvature uniformity. Indeed for this
case, Eq. �5.4� reduces to:

�rr + ��� =
Eshs

2

6�1 − �s�hf
��rr + ���� �5.14�

If in addition the curvature state is equibiaxial ��rr=����, as as-
sumed by Stoney, Eq. �1.1� is recovered while relation �5.2� fur-
nishes �rr=��� �stress equibiaxiality� as a special case.

6 Discussion and Conclusions
Unlike Stoney’s original analysis and its extensions discussed

in Sec. 1, the present analysis, together with Huang and Rosakis
�13� and Huang et al. �14� for the special case of axisymmetry,
show that the dependence of film stresses on substrate curvatures
is not generally “local.” Here the stress components at a point on
the film will, in general, depend on both the local value of the
curvature components �at the same point� and on the value of
curvatures of all other points on the plate system �nonlocal depen-
dence�. The more pronounced the curvature nonuniformities are,
the more important such nonlocal effects become in accurately
determining film stresses from curvature measurements. This
demonstrates that analyses methods based on Stoney’s approach
and its various extensions cannot handle the nonlocality of the
stress/curvature dependence and may result in substantial stress
prediction errors if such analyses are applied locally in cases
where spatial variations of system curvatures and stresses are
present.

The presence of nonlocal contributions in such relations also
has implications regarding the nature of diagnostic methods
needed to perform wafer-level film stress measurements. Notably,
the existence of nonlocal terms necessitates the use of full-field
methods capable of measuring curvature components over the en-
tire surface of the plate system �or wafer�. Furthermore, measure-
ment of all independent components of the curvature field is nec-
essary. This is because the stress state at a point depends on
curvature contributions �from �rr, ���, and �r�� from the entire
plate surface.

Regarding the curvature-temperature �Eqs. �4.2�–�4.4�� and
stress-temperature �Eqs. �4.5�–�4.7�� relations, the following
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points are noteworthy. These relations also generally feature a
dependence of local temperature T�r ,�� which is “Stoney-like” as
well as a “nonlocal” contribution from the temperature of other
points on the plate system. Furthermore, the stress and curvature
states are always nonequibiaxial �i.e., �rr

�f�����
�f� and �rr����� in

the presence of temperature nonuniformities. Only if T=constant
these states become equibiaxial, the “nonlocal” contributions van-
ish, and Stoney’s original results are recovered as a special case.

Finally, it should be noted that the existence of nonuniformities
also results in the establishment of shear stresses along the film/
substrate interface. These stresses are in general related to the
derivatives of the first curvature invariant �rr+��� �Eqs. �5.11�
and �5.12��. In terms of temperature, these interfacial shear
stresses are also related to the gradients of the temperature distri-
bution T�r ,��. The occurrence of such stresses is ultimately re-
lated to spatial nonuniformities, and as a result, such stresses van-
ish for the special case of uniform �rr+��� or T considered by
Stoney and its various extensions. Since film delamination is a
commonly encountered form of failure during wafer manufactur-
ing, the ability to estimate the level and distribution of such
stresses from wafer-level metrology might prove to be invaluable
in enhancing the reliability of such systems.
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Optimal Shape of a Rotating Rod
With Unsymmetrical Boundary
Conditions
Governing equations of a compressed rotating rod with clamped–elastically clamped
(hinged with a torsional spring) boundary conditions is derived. It is shown that the
multiplicity of an eigenvalue of this system can be at most equal to two. The optimality
conditions, via Pontryagin’s maximum principle, are derived in the case of bimodal
optimization. When these conditions are used the problem of determining the optimal
cross-sectional area function is reduced to the solution of a nonlinear boundary value
problem. The problem treated here generalizes our earlier results presented in Atanack-
ovic, 1997, Stability Theory of Elastic Rods, World Scientific, River Edge, NJ. The opti-
mal shape of a rod is determined by numerical integration for several values of
parameters. �DOI: 10.1115/1.2744041�

1 Introduction

Consider an elastic rod BC of length L, clamped at end B and
simply supported at the end C. The change of angle of the rod axis
at C is constrained by a torsional spring with a spring constant c
�see Fig. 1�. Suppose that the rod has circular cross section, that
its axis is straight, and that it rotates with the constant angular
velocity � about its axis. Let x−B−y be the rectangular Cartesian
coordinate system with the axis x oriented along the rod axis in
the undeformed state. At the end C the rod is loaded by a concen-
trated force F having constant intensity F and the action line
parallel to the x axis. Let � be a plane defined by the system x
−B−y that rotates with the angular velocity � about x axis. At a
certain velocity the rod loses stability �buckles� so that it is bent
under the action of centrifugal forces and force F. If the rod is
bent it will assume a relative �with respect to the rotating plane
��, equilibrium configuration �see Fig. 1�. The problem of deter-
mining the rotation speed � and the force F at which the rod axis
changes from a straight to bent shape is indeed an old one and its
solution has importance in mechanical engineering. When the
cross-sectional area A�S� is known and F=0 it has been treated in
Refs. �1–3�. The case ��, F�0 was analyzed in Refs. �4–6�.

In Ref. �7� we formulated and solved the problem of determin-
ing optimal shape �the function A�S� for the rotating rod stable
against buckling and having the smallest mass� when the end C is
free and when with F=0. In Ref. �8� the clamped-free boundary
conditions for the case ��, F�0 was treated. Finally in Ref. �12�
the case ��, F�0 with both ends clamped was analyzed. The
case of both ends clamped significantly changed the procedure,
based on Pontryagin’s principle, which was used in Refs. �7,8�
since in that case we had to deal with bimodal optimization. In
formulating the optimality conditions in Ref. �8� we used, implic-
itly, the symmetry with respect to the point S=L /2 that the prob-
lem has when both ends are clamped.

Our intention in this paper is to generalize the procedure of
Refs. �10,7,12� to include the rod shown in Fig. 1. Thus, we shall
derive new optimality condition for rotating the compressed rod
via Pontryagin’s principle. Our conditions will be derived without
any assumptions about symmetry of the solutions �such as A�S�
=A�L−S��. Then we shall solve the corresponding system of
equations and determine the optimal shape of the rod rotating with

given angular velocity � and being compressed at the end C with
the force F. As a special case we shall recover the optimality
condition of Seyranian �13� �see also Refs. �15,16�� corresponding
to the correct solution of the problem of Keller �14�.

The major characteristics of our approach is the use of Pontrya-
gin’s principle in determining optimality conditions. It is known
that in the case of bimodal optimization �as is the case here� the
eigenvalue of the spectral problem describing stability boundary is
not a differentiable functional �usually taken in the form of Ray-
leigh’s quotient� of the buckling modes. Thus, in principle, the
standard version of Pontryagin’s principle is not applicable to the
problems where eigenvalues are minimized �maximized�. In order
to avoid this problem, we will take another approach. Namely, we
shall assume that the eigenvalue �in our case eigenvalue pair� is
fixed and given. We shall minimize the volume of the column. By
writing the cross-sectional area function in a suitable form we will
have a functional �see Eq. �30�� that is differentiable with respect
to a certain set of parameters �17�.

2 Mathematical Model
We describe the rod axis, i.e., the line �a plane curve in ��

joining centroids of circular cross sections, by the functions x�S�
and y�S�. The angle between the tangent to the rod axis and Bx
axis is denoted by ��S�. Thus we obtain the nonlinear differential
equations of the rod in the following form

dH

dS
= 0,

dV

dS
= − �A�2y,

dM

dS
= − V cos � + H sin �

d�

dS
=

M

EI
,

dx

dS
= cos �,

dy

dS
= sin � �1�

where H, V are components of the contact force at an arbitrary
cross section S �a resultant force representing the influence of the
part �0,S� of the rod on the part �S ,L�� along the x and y axis,
respectively; M stands for the contact couple; and where � de-
notes the mass density of the rod. The boundary conditions corre-
sponding to Eq. �1� read

H�0� = H�L� = − F, x�0� = 0, y�0� = y�L� = 0

��0� = 0, M�L� + c��L� = 0 �2�

The volume of the rod is
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W =�
0

L

A�S�dS �3�

We assume that the cross section of the rod is circular, so that

I = �A2 �4�

where �= �1/4�� is a constant. By using the dimensionless vari-
ables and parameters

t =
S

L
, a =

A

L2 , y =
ȳ

L
, w =

W

L3 , k =
c

E�L3

m =
M

E�L3 , v =
V

E�L2 , �1 =
��2L2

E�
, �2 =

F0

E�L2 �5�

the relevant differential equations and the boundary conditions,
after linearization, become

v̇ = − �1a�, ṁ = − v − �2�, �̇ = �, �̇ =
m

a2 �6�

and

��0� = ��1� = 0, ��0� = 0 m�1� + k��1� = 0 �7�
where the dot over the variable represents the derivative with
respect to dimensionless arc length t. The dimensionless volume is

w =�
0

1

a�t�dt �8�

Note that for the case of the nonrotating rod, simply supported at
C, i.e., �1=0, k=0 the system Eq. �6� reduces to the case treated
in Ref. �14� and when �1=0, k�0 to the system treated in Ref.
�16�.

In the optimization procedure we need multiplicity of the eigen-
value pair ��1 ,�2� in Eqs. �6� and �7� for a given a�t�. We prove
that the maximal multiplicity is equal to two. Thus suppose that
for given a�t� and ��1 ,�2� there are three linearly independent
solutions 	i, mi, �i, �i, i=1,2 ,3 of Eqs. �6� and �7�. Then

N = c1	1 + c2	2 + c3	3, M = c1m1 + c2m2 + c3m3

Y = c1�1 + c2�2 + c3�3, T = c1�1 + c2�2 + c3�3 �9�

for arbitrary ci, i=1,2 ,3 satisfies Eqs. �6� and �7�, i.e.

Ṅ = − �1aY, Ṁ = − N − �2T, Ẏ = T, Ṫ =
M
a2 �10�

Note that from Eq. �7�1,3

Y�0� = T�0� = 0 �11�

Since N�0�=c1	1�0�+c2	2�0�+c3	3�0�, M�0�=c1m1�0�
+c2m2�0�+c3m3�0� we can always choose ci so that

N�0� = M�0� = 0 �12�

System �10� with the initial conditions Eqs. �11� and �12� has the
unique solution N=M=Y=T=0. Thus 	i, mi, �i, �i, i=1,2 ,3 are
linearly dependent.

If a�t� is known the values of ��1 ,�2��R2 for which Eqs. �6�
and �7� have a nontrivial solution, define a set of curves Cn, n
=1,2 , . . ., called the interaction curves. The interaction curves for
first two modes, for the case of a rod with constant cross section,
are shown in Fig. 2�a�. For the case of a variable cross section the
interaction curves may approach each other and intersect. This
could happen for the optimal cross section and we show the case
when the interaction curves corresponding to the first and second
mode touch each other in Fig. 2�b�. In this case there are two
buckling modes �1�t� and �2�t� corresponding to ��1 ,�2�
= ��1

* ,�2
*�.

In the optimization procedure that follows we shall allow for
the situation shown in Fig. 2�b�.

3 The Optimization Problem
The problem of determining the optimal shape of the rod, may

be stated as: Given ��1
* ,�2

*� find a*�t� such that ��1
* ,�2

*� belongs to
the lowest interaction curve defined by the system Eqs. �6� and �7�
and, at the same time, the volume of the rod w*=�0

1a*�t�dt is
minimal.

Mathematically, this problem may be stated as: given ��1
* ,�2

*�
find a�t� such that

w =�
0

1

a�t�dt �13�

is minimized subject to the constraints �6� and �7�. The cross-
sectional area a�t� will be treated as the control variable.1

We use Pontryagin’s principle to determine a*�t� as shown in
Refs. �9,11�. Let x1=y, x2=	, x3=�, x4=m. Then the system Eqs.
�6� and �7� becomes

ẋ1 = x3, ẋ2 = − �1ax1, ẋ3 =
x4

a2 , ẋ4 = − x2 − �2x3 �14�

and

x1�0� = 0, x3�0� = 0, x1�1� = 0, x4�1� + kx3�1� = 0 �15�

Suppose that for given a�t�= ã�t� and given ��1 ,�2� there are two
�since the maximal multiplicity of an eigenvalue pair is equal to
two� linearly independent solutions of the system Eqs. �14� and
�15� that we denote by �x̄1 , . . . , x̄4� and �x̂1 , . . . , x̂4�. Thus

x̄
.

1 = x̄3, x̂
.

1 = x̂3

x̄
.

2 = − �1ãx̄1, x̂
.

2 = − �1ãx̂

1Since the pair ��1
* ,�2

*� is given we shall not differentiate it with respect to a�t�.

Fig. 1 Coordinate system and loading configuration

Fig. 2 Interaction curves for: „a… constant cross section; and
„b… optimal cross section
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x̄
.

3 =
x̄4

ã2 , x̂
.

3 =
x̂4

ã2

x̄
.

4 = − x̄2 − �1x̄3, x̂
.

4 = − x̂2 − �1x̂3 �16�
satisfying

x̄1�0� = 0, x̂1�0� = 0

x̄1�1� = 0, x̂1�1� = 0

x̄3�0� = 0, x̂3�0� = 0

x̄4�1� + kx̄3�1� = 0, x̂4�1� + kx̂3�1� = 0 �17�
To determine the minimum of Eq. �13� subject to Eqs. �16� and
�17�, we form Pontryagin’s function H, as �see Ref. �9��

H = ã + p̄1x̄3 − �1p̄2ãx̄1 + p̄3
x̄4

ã2 − p̄4�x̄2 + �2x̄3� + p̂1x̂3 − �1p̂2ãx̂1

+ p̂3
x̂4

ã2 − p̂4�x̂2 + �2x̂3� �18�

The co-state variables p̄i , p̂i , i=1, . . . ,4 satisfy

p̄
.

1 = −
�H

� x̄1

= �1p̄2ã, p̂
.

1 = −
�H

� x̂1

= �1x̂ã

p̄
.

2 = −
�H

� x̄2

= p̄4, p̂
.

2 = −
�H

� x̂2

= p̂4

p̄
.

3 = −
�H

� x̄3

= − p̄1 + �2p̄4, p̂
.

3 = −
�H

� x̂3

= − p̂1 + �2p̂4

p̄
.

4 = −
�H

� x̄4

= −
p̄3

ã2 , p̂
.

4 = −
�H

� x̂4

= −
p̂3

ã2 �19�

subject to

p̄2�1� = 0, p̂2�1� = 0

p̄2�0� = 0, p̂2�0� = 0

p̄4�0� = 0, p̂4�0� = 0

p̄3�1� − kp̄4�0� = 0, p̂3�1� − kp̂4�1� = 0 �20�
The optimality condition, Hmin a�U, leads to �see Refs. �18–20��

�H
�a

= 1 − 2p̄3
x̄4

ã3 − 2p̂3
x̂4

ã3 − �1�p̄2x̄1+1p̂2ãx̂1� = 0 �21�

so that

ã3 = 2
p̄3x̄4 + p̂3x̂4

1 + �1�p̄2x̄1 + p̂2x̂1�
�22�

In our earlier works we used the special identification of state
x̄i , x̂i , i=1, . . . ,4 and co-state p̄i , p̂i , i=1, . . . ,4 variables. Namely
it is easy to see that solutions to Eqs. �16� and �17� and Eqs. �19�
and �20� are related as

p̄1 = x̄2, p̄2 = − x̄1, p̄3 = x̄4, p̄4 = − x̄3

p̂1 = x̂2, p̂2 = − x̂1, p̂3 = x̂4, p̂4 = − x̂3 �23�

The identification of state and co-state variables Eq. �23� is of
central importance. In principle we may take p̄i , p̂i , i=1, . . .4 as
linear combination of x̄i , x̂i , i=1, . . .4. From Eq. �23� we conclude
that

p̄1 = 
11x̄2 + 
12x̂2, p̄2 = − 
11x̄1 − 
12x̂1

p̄3 = 
11x̄4 + 
12x̂4, p̄4 = − 
11x̄3 − 
12x̂3

p̂1 = 
21x̄2 + 
22x̂2, p̂2 = − 
21x̄1 − 
22x̂1

p̂3 = 
21x̄4 + 
22x̂4, p̂4 = − 
21x̄4 − 
22x̂4 �24�

where 
ij , i , j=1,2 are any real constants, satisfying Eqs. �19� and
�20�. With Eq. �24� the optimality condition Eq. �22� becomes

ã3 = 2

11�x̄4�2 + 2�12x̄4x̂4 + 
22�x̂4�2

1 + �1�
11�x̄1�2 + 2�12x̄1x̂1 + 
22�x̂1�2�
�25�

where �12= �
12+
21� /2. The optimality condition Eq. �25� gen-
eralizes the earlier results. For example in the case when the rod is
not rotating, i.e., �1=0, Eq. �25� reduces to �the constant 2 is
included in 
11, 
22, and �12�

ã3 = 
11�x̄4�2 + 2�12x̄4x̂4 + 
22�x̂4�2 �26�

earlier obtained by Seyranian �13,16�. Since ã�t��0 the coeffi-
cients 
11, �12, and 
22 must satisfy the positive definite condi-
tion, that is


11
22 �
1
4 ��11�2 �27�

By using Eq. �25� in Eq. �16� we obtain

x̄
.

1 = x̄3

x̄
.

2 = − �1x̄1�2

11�x̄4�2 + 2�12x̄4x̂4 + 
22�x̂4�2

1 + �1�
11�x̄1�2 + 2�12x̄1x̂1 + 
22�x̂1�2�
�1/3

x̄
.

3 =
x̄4

�2

11�x̄4�2 + 2�12x̄4x̂4 + 
22�x̂4�2

1 + �1�
11�x̄1�2 + 2�12x̄1x̂1 + 
22�x̂1�2�
�2/3

x̄
.

4 = − x̄2 − �2x̄3

x̂
.

1 = x̂3

x̂
.

2 = − �1x̂1�2

11�x̄4�2 + 2�12x̄4x̂4 + 
22�x̂4�2

1 + �1�
11�x̄1�2 + 2�12x̄1x̂1 + 
22�x̂1�2�
�1/3

x̂
.

3 =
x̂4

� 
11�x̄4�2 + 2�12x̄4x̂4 + 
22�x̂4�2

1 + �1�
11�x̄1�2 + 2�12x̄1x̂1 + 
22�x̂1�2�
�2/3

x̂
.

4 = − x̂2 − �2x̂3 �28�

subject to Eq. �17�. Note that with Eqs. �24� and �25� the Pontrya-
gin’s function H is not explicitly dependant on t so that it is a first
integral of the system Eq. �27�.

We how comment on the constants 
11, 
22, and �12. They are
subject to Eq. �27�, otherwise they are arbitrary. Without loss of
generality we may take 
11=
22=1 �just redefine x̄i , x̂i , i

=1, . . . ,4 as X̄i= x̄i
	
11, X̂i= x̂i

	
22�. Then, Eq. �27� becomes
�with new constant �12 defined as �12

	
11
22�

1 � ��12�2 �29�

To fix �12 we use Eq. �26� in Eq. �13� and to minimize the result-
ing expression with respect to �12, i.e.
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w* = min
�12
�

0

1

ã�t,�12�dt

= min
�12
�

0

1 
2
�x̄4�2 + 2�12x̄4x̂4 + �x̂4�2

1 + �1��x̄1�2 + 2�12x̄1x̂1 + �x̂1�2��1/3

dt �30�

From Eq. �30� we obtain

�w*

��12
=�

0

1
� ã�t,�12�

��12
dt = 0 �31�

or by using Eq. �26� to evaluate �ã�t ,�12� /��12, we obtain

�
0

1
2

3ã2
 2x̄4x̂4

1 + �1��x̄1�2 + 2�12x̄1x̂1 + �x̂1�2�

−
2�1x̄1x̂1��x̄4�2 + 2�12x̄4x̂4 + �x̂4�2�
�1 + �1��x̄1�2 + 2�12x̄1x̂1 + �x̂1�2��2�dt = 0 �32�

In the special case when �1=0, the condition �32� leads to

�
0

1
x̄4x̂4

ã2 dt = 0 �33�

The orthogonality condition of the type Eq. �33� was used “for the
sake of convenience” �see Eq. �4.1� in Refs. �16,21� for c2→0�.
Note also that Eqs. �29� and �32� are of the same form as condi-
tions �66� and �67� of Ref. �21�.

In the examples of the following section we shall show that,
depending on the eigenfunctions, we may have �12=0 satisfying
Eq. �32�. Sometimes, however, condition �32� leads to �12�0. It
is always the case for the symmetric boundary conditions if x̄i , i
=1, . . . ,4 is symmetric and x̂i , i=1, . . . ,4 is antisymmetric mode.

4 Numerical Results
�i� We start with the benchmark example of Ref. �14�. This

corresponds to �1=0 in Eq. �28�. For the case k=0 the second
mode is not twice the continuously differentiable function �the
displacement is continuous and the slope is discontinuous func-
tion�. This is a consequence of the fact that the point t=0.2895 at
which the cross-sectional area is zero, may be considered as an
internal hinge. Thus we assume a value of k, and determine ã�t ,k�,
w*�t ,k�. Then we let k→0. In Table 1, we show w*�t ,k� for sev-
eral values of k.

The buckling modes for the optimal cross section for �2
=27.22, k=0.1 are shown in Fig. 3. When the value �2=27.22
�determined in Ref. �14�� is used we obtained the value of volume

as w*=0.990798. Thus, bimodal analysis confirms that the solu-
tion of Ref. �14� is optimal. This was confirmed in Refs. �22,16�.
In numerical analysis of this example, in solving Eqs. �28� and
�17�, we get �12=0.

The optimal cross-sectional area is shown in Fig. 4. It is in
agreement with the results of Ref. �16� where �in our notation�
k=4 was used. The characteristic values of the cross-sectional
area are: amin=a�0.28973�=7.2410−4, amax=a�0.6428�
=1.354089; and a�0�=1.32703.

�ii� Next, we consider the case �1=30, �2=37.5, k=4. This time
we used condition �32� to determine �12. The resulting value was
�12=0.21504. First and second buckling modes are shown in Fig.
5, while the optimal cross-sectional area is shown in Fig. 6.

�iii� Finally we consider the case when the stiffness of the tor-
sional spring is increasing. Thus we assume �1=40, �2=40, k

Table 1 Optimal volume as a function of the spring constant

k 1 0.8 0.6 0.4 0.2 0.1

w*�k� 0.926928 0.938855 0.951899 0.966237 0.982131 0.990798

Fig. 3 Buckling modes corresponding to optimal cross-
sectional area for �1=0, �2=27.22, k=0.1

Fig. 4 Optimal cross-sectional area for �1=0, �2=27.22, k
=0.1

Fig. 5 Buckling modes corresponding to optimal cross-
sectional area for �1=30, �2=37.5, k=4

Fig. 6 Optimal cross-sectional area for �1=30, �2=37.5, k=4
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=100. Again we force a solution of Eqs. �28� and �17� to satisfy
Eq. �32� and obtained �12=−0.235145. The modes are shown in
Fig. 7 and the cross-sectional area in Fig. 8.

The characteristic values of the cross–sectional area are: A�0�
=1.28163, A�1�=1.271813, and Amin=A�0.75855�=0.17464.

5 Conclusion
We studied the problem of determining the optimal shape

against buckling of a rotating compressed rod with clamped–
elastically clamped �hinged with torsional spring� boundary con-
ditions. We formulate the optimality conditions by using Pontriya-
gin’s maximum principle that includes the optimality condition of
Refs. �13,16�, as a special case when the rod is not rotating.

In our formulation the constant �12 that contains the mixed term
in the optimal cross section �see Eq. �26�� satisfies the inequality
Eq. �29�, and condition �32�. The orthogonality condition of this
type was proposed in Ref. �13�. In some examples the conditions
�29� and �32� were satisfied, with �12=0.

In the example �i� we treated the case of Keller formulated in
Ref. �14�, i.e., �1=0. Our analysis shows that, although obtained
by unimodal analysis, the solution presented in Ref. �14� is cor-

rect. Thus we confirm the conclusion earlier stated in Refs.
�22,16�. In example �ii� we considered both parameters of equal
importance and we imposed the orthogonality condition �32�. Fi-
nally in example �iii� the torsional spring is considered to be stiff
�large value of the constant k�. The optimal shape tends to become
symmetric �a�t�=a�1− t�� as k→�, thus approaching the solution
presented in Ref. �12� corresponding to a rod with clamped ends.
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The Bridged Crack Model for the
Analysis of Brittle Matrix Fibrous
Composites Under Repeated
Bending Loading
In this paper, we present a fracture-mechanics based model, the so-called bridged crack
model (Carpinteri, A., 1981, “A Fracture Mechanics Model for Reinforced Concrete
Collapse,” Proc. of IABSE Colloquium on Advanced Mechanics of Reinforced Concrete,
Delft, I.A.B.S.E., Zürich, pp. 17–30; Carpinteri, A., 1984, “Stability of Fracturing Pro-
cess in R.C. Beams,” J. Struct. Engng. (A.S.C.E.), 110, pp. 544–558) for the analysis of
brittle matrix composites with discontinuous ductile reinforcements under the condition
of repeated bending loading. In particular, we address the case of composites with very
high number of reinforcements (i.e., fiber-reinforced composites, rather than convention-
ally reinforced concrete). With this aim, we propose a new iterative procedure and com-
pare it to the algorithm recently proposed by Carpinteri, Spagnoli, and Vantadori (2004,
“A Fracture Mechanics Model for a Composite Beam with Multiple Reinforcements
Under Cyclic Bending,” Int. J. Solids Struct., 41, pp. 5499–5515), showing the advan-
tages in terms of computational efficiency. Furthermore, we analyze the combined effects
of crack length, brittleness number, and fiber number on the cyclic behavior of the
composite beam, showing the conditions enhancing the energy dissipation in the com-
posite system. Eventually, we analyze crack propagation and propose, consistently with
the model premises, a fracture-mechanics-based crack propagation criterion that allows
one to simulate cyclic bending tests under the fixed grip condition.
�DOI: 10.1115/1.2744042�

Keywords: bridged crack, brittle matrix composite, repeated loading

Introduction
Independently of the matrix and fiber materials and in spite of

different physical and mechanical properties, fibrous composites
present a common feature, namely, the bridging or the reinforcing
action exerted by the fibers spread into the matrix. This action
affects the global structural response of the composite component
mainly in the post-cracking phase, resulting in an increase of sev-
eral mechanical properties: strength, stiffness, toughness, ductility,
crack resistance, and fatigue strength. The cracking process is
controlled by the reinforcements, which act across micro- and
macrocracks. For this reason, the bridging mechanism is central
also in all mechanical models for the analysis of the composite
material response, especially if the matrix is brittle.

Two fracture-mechanics-based approaches have been exten-
sively used in the last 20 years for modeling the constitutive be-
havior of fibrous composites: the bridged crack model �1,2� and
the cohesive crack model. Both model types, in accordance with
the ones proposed by Barenblatt �4� for the analysis of brittle
heterogeneous materials and by Dugdale �5� for the analysis of
ductile materials, replace the bridging zone by a fictitious crack
and represent the bridging actions by a closing traction distribu-
tion ��w� �cohesive law�, where w is the crack opening, or by a
series of concentrated loads. In other words, the fracture process
zone �FPZ� is substituted by a discrete crack and the localized
closing tractions, either continuous or discontinuous, on the crack
faces, represent the bridging mechanisms active in the FPZ.

The fundamental difference between these two model types is

in the assumed stress field in the crack tip vicinity; for the bridged
crack model, it is a singular stress field, whereas for the cohesive
crack model, it is finite and limited by the tensile strength. As a
result, also, the crack propagation conditions are different: In the
case of the bridged crack model, crack propagates when the
stress-intensity factor at the crack tip attains the critical value KIC,
which is a measure of the matrix toughness. On the other hand,
the cohesive crack model assumes that crack propagation occurs
when the stress-intensity factor is equal to zero �i.e., when the
stress at the crack tip equals the composite strength�. In the first
case, two factors affect the global toughness of the composite: The
first is the matrix toughness, represented by the critical value of
the stress-intensity factor, which is assumed to be a material prop-
erty, and the second is the reinforcing phase toughening mecha-
nism, governed by the properties of the reinforcements and by
their interaction with the matrix. In the cohesive crack, only a
global toughening mechanism of the composite is defined; it is
represented by the shielding effect due to the cohesive tractions.
As a consequence, the matrix toughening, explicitly represented in
the former case by the matrix toughness, is in this latter case
merged with the toughening mechanism produced by the second-
ary phase through the cohesive law.

The cohesive crack model has been extensively used with the
aim at describing concrete and fiber-reinforced cementitious com-
posites �among others, see the papers by Hillerborg et al. �6�,
Petersson �7�, Hillerborg �8�, Carpinteri �9–11�, Shah �12�, Cotter-
ell et al. �13�, Li and Liang �14�, Wecharatana and Shah �15�, and
Visalvanich and Naaman �16��. Nevertheless, the bridged crack
model, which seems to be more suitable to represent the discon-
tinuous nature of the reinforcing actions, has been used even more
extensively, both in the case of cementitious and ceramic compos-
ites. Among models specifically developed for the case of con-
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crete, we could mention those of Carpinteri �1,2�, Ballarini et al.
�17�, Mai �18�, Jenq and Shah �19�, Foote et al. �20�, Zhang and Li
�21�, and Ruiz �22�. Other papers dealt preferably with ceramic
composites, in which reinforcements could be fibers, ductile par-
ticles or even grain of the matrix itself, as in the case of SiC-SiC
composites. This class includes the models of Erdogan and Joseph
�23�, Mai �24�, Cox �25�, Marshall et al. �26�, Marshall and Cox
�27�, Budiansky et al. �28�, Cox and Marshall �29,30�, and Bal-
larini and Muju �31�.

Both the cohesive and the bridged crack models lead to a non-
linear problem because in general, the closing tractions depend on
the crack face openings, and vice versa. Several different ap-
proaches are taken in the aforementioned models, in order to re-
solve the nonlinear problem. A first approach due to Barenblatt
�4�, utilizes the superposition of the stress-intensity factors, from
which a singular, nonlinear, integral equation is defined. The equa-
tion is then resolved directly in particular cases or through itera-
tive procedures. Several researchers also followed a simplified
path, by considering the planar crack face hypothesis. In this case,
the solution is very simple and the unknowns are reduced to only
one, namely, the FPZ depth. It should be noted that this approach
does not take into account the compatibility and leads to, solely,
an equilibrium solution. The same problem has been evidenced in
other approaches, which are not directly referred to the planar
crack face hypothesis. On the other hand, the bridged crack model
proposed by Carpinteri �1� and co-workers takes into account both
equilibrium and compatibility. This latter model has been deeply
investigated for the case of monotonic loading; the interested
reader is referred to �1,2,32–38�. In particular, Carpinteri and
Massabò �35� unified the bridged crack model and the cohesive
one in a single formulation, demonstrating their practical equiva-
lence. More recently, Carpinteri et al. �36� presented an improved
version in which the reinforcements at two different length scales
are represented. In fact, the actions exerted by the larger fibers �or
bars� at the macroscale are represented through concentrated
bridging loads, whereas those of the microscopic fibers at the
microscale are modeled through a cohesive bridging law; this en-
hancement allows one to model composites with a nonlinear ma-
trix.

Regarding cyclic loading and elastoplastic shakedown, this
problem was originally addressed by Carpinteri and Carpinteri
�39� and Carpinteri �40� in the case of a single reinforcement.
Recently, Carpinteri and Puzzi �41,42� analyzed the case of two
and any number of reinforcements. Similar developments were
published by Carpinteri et al. �3�, who also extended the model to
beams with a “T” cross section and prestressed �43�.

In this paper, we review the fundamental issues in repeated
loading of reinforced beams and, with the aim at modeling com-
posites with a very high number of reinforcements, we propose a
new solution procedure. Furthermore, we will analyze the com-
bined effects of crack length, brittleness number, and fiber number
on the cyclic behavior of the composite beam; eventually, we
propose a crack propagation criterion based on fracture mechan-
ics, which allows one to simulate cyclic bending tests not only
under dead load conditions, but also under fixed grip conditions.

Geometry and Constitutive Equations
Let us consider a composite beam subjected to bending with an

edge crack of length a, whose faces are bridged by intact rein-
forcements �either fibers or bars�, as shown in Fig. 1. The model
focuses onto the cracked cross section and considers a portion of
the beam of vanishing length �l, centered on the crack, subjected
to the bending moment M. Let b and h be the section thickness
and height, respectively, N the total number of discrete reinforcing
elements, and n the number of them acting across the crack wake.
The normalized crack depth �=a /h and the normalized coordinate
�=z /h are defined, z being the coordinate related to the bottom of
the cross section. The generic position of the ith reinforcement is
described by the coordinate ci, and its action is represented by an

indeterminate force Pi, while the crack opening in correspondence
of its position is given by wi. The solution of the above problem
consists in the determination of the n unknown reinforcement ac-
tions Pi,i=1, . . . ,n and of the n unknown crack openings.

Regarding materials, the beam matrix is considered to be elastic
brittle, and smeared damage is not considered. The bridging law
linking the closing action Pi of the ith fiber with the correspond-
ing crack opening wi is assumed to be rigid-perfectly plastic, so
that it could represent both the fiber yielding or the matrix-fiber
slippage �or pullout�. In fact, the maximum bridging traction is
defined by the ultimate force PPi=Ai�y, Ai being the single rein-
forcement cross-sectional area, and �y the minimum between the
reinforcement yield strength and the slippage stress. This assump-
tion is valid for all brittle matrix composites with ductile rein-
forcements, such as metal-toughened ceramics and the large ma-
jority of fiber-reinforced cementitious composites. On the other
hand, it is not apt to describe the traction law of materials rein-
forced with brittle fibers.

To resolve the statically indeterminate problem of the reinforce-
ment action, compatibility displacement conditions at the cracked
cross section are introduced. The crack opening in correspondence
to the ith fiber can be computed by superposition, by adding the
contribution wiM due to the external bending moment M to those
due the n redundant reaction forces Pi �wij, i, j=1, . . . ,n�,

wi = wiM + �
j=1

n

wij = �iMM − �
j=1

n

�ijPj �1�

where �iM and �ij are the local compliances, i.e., the crack open-
ing displacements at the ith fiber level, due to a unit bending
moment M =1 and a unit closing action Pj =1, respectively. The
localized rotation also may be computed by superposition

� = �M + �
i=1

n

�i = �MMM − �
i=1

n

�MiPi �2�

where �Mi is the local rotation due to a pair of unit opposite
opening forces applied at ci; according to Betti’s theorem, it is
equal to the compliance �iM that appears in Eq. �1�. �MM repre-
sents the rotation due to the action of a unit bending moment M.
The energy balance for the determination of the generic local
compliance of a cracked element subjected to a generic loading
condition can be found in the papers by Bosco and Carpinteri �32�
and Carpinteri and Massabò �35�. The final expressions of the
compliances are

�iM =
2

hbE�
�i

�

YP��i,��YM���d�

�ij = � ji =
2

bE�max��i,�j�

�

YP��i,��YP�� j,��d�

Fig. 1 Model geometry
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�MM =
2

h2bE�0

�

YM���2d� �3�

where the shape functions YM and YPi are given in different stress
intensity factors �SIFs� handbooks �44,45�.

The foregoing theoretical scheme allows us to describe the in-
determinate problem of the n unknown forces in a matrix form.
Let �w�= �w1 , . . . ,wn�T be the vector of the crack face displace-
ments �openings� in correspondence to the n fibers, with number-
ing starting from the bottom fiber. Correspondingly, the vector
�P�= �P1 , . . . , Pn�T of the indeterminate fiber actions, is defined.
The local compliances due to the external bending moment M are
collected into the vector ��M�= ��1M , . . . ,�nM�T, whereas those
due to the bridging tractions Pi are collected in a matrix ���, of
dimensions �n�n�, the generic element ij of which is the local
compliance �ij. Recalling the expression of the ith crack opening
wi, Eq. �1�, it is possible to express the vector �w� through the
following equation:

�w� = ��M�M − ����P� �4�

Considering a beam loaded by the external bending moment M,
before the onset of yielding �or slippage between the reinforce-
ment and the matrix�, the bridging actions keep the crack locally
closed. The compatibility condition is therefore expressed by the
following linear matrix system of n equations: �w�= �0�. The sys-
tem solution leads to the computation of the vector �P� of the
unknown forces exerted by the reinforcements; they are functions
of the applied bending moment M, as follows �it can be easily
shown that the matrix ��� is symmetric and positively definite�:

�P� = ���−1��M�M �5�

After the plastic limit of the most loaded fiber �say, the ith� has
been reached, the value of the ith opening wi becomes greater than
zero and a priori unknown. This means that the ith equation of the
n relations �5� does not hold any longer. In this new phase, the
statically indeterminate problem is solved by imposing a zero
crack opening in correspondence of the �n−1� reinforcements,
which still are in their elastic regime, through Eq. �4�. By doing
so, a linear system is obtained, of rank �n−1�, since the bridging
action Pi is already known and equal to its plastic limit: Pi= PPi.
After the bridging tractions have been computed, it is a simple
task to determine the amount of the crack opening wi by introduc-
ing their values into the ith equation of the system �4�.

A similar procedure can be followed to resolve the indetermi-
nate problem at a subsequent stage, when two or more reinforce-
ments are in the plastic �or slippage� stage. It can be easily ob-
served that, for any given load, the number of compatibility
conditions is equal to the number of static unknowns. In other
words, when a fiber reaches its maximum attainable load, which
corresponds to plastic flow or sliding, the true unknown becomes
the corresponding opening displacement. As a result, the indeter-
minacy degree of the initially statically indeterminate problem is
reduced by one.

To write this procedure mathematically in a general form, sup-
posing that nf fibers are in a condition of plastic flow, while the
remaining nc still behave elastically, the problem is partially stati-
cally indeterminate and partially determinate, the true unknowns
being nf displacements �wf� and nc reactions �Pc� �the subscripts f
and c refer to free and constrained, respectively�. Partitioning Eq.
�4� in order to separate the static variables from the kinematic
ones, the following system is obtained:

	wf

wc

 = 	�M,f

�M,c

M − �� f f � fc

�cf �cc
�	Pf

Pc

 �6�

Considering that �wc� 	 �0�, from the lower part of Eq. �6� the nc
statically indeterminate bridging actions can be determined

�Pc� = ��cc�−1���M,c�M − ��cf��Pf�� �7�

Introducing Eq. �7� into the upper part of Eq. �6�, and considering
again that Pfi= PPi, it is straightforward to compute the displace-
ments �wf�,

�wf� = ���M,f� − �� fc���cc�−1��M,c��M

+ ��� fc���cc�−1��cf� − �� f f���Pf� �8�

For the case of repeated loading, the generalization of these for-
mulas is obvious: it is only necessary to consider each single
monotonic part of the loading process, with the load either in-
creasing or decreasing, as starting from an initial configuration
�here after indicated by the subscript zero�, as shown in Fig. 2.
Therefore, Eq. �4� can be rewritten in its incremental form,

�w� − �w0� = ��M��M − M0� − �����P� − �P0�� �9�

As in the previous case, the system of the n equations �9� presents
2n unknowns: the displacements �w� and the reactions �P� of the
n reinforcements crossing the crack wake. The problem can be
solved on the basis of the already described compatibility condi-
tion: The ith component of the left-hand side term of Eq. �9�
should be zero till the inverse limit force of the ith reinforcement
is attained: Pi=−PPi. Unless this condition is reached, the n inde-
terminate reactions �P� are expressed by

�P� − �P0� = ���−1��M��M − M0� �10�

while the displacements are known: �w�= �w0�. Equation �10� is a
generalization of Eq. �5�; following the same reasoning, Eqs.
�6�–�8� could also be generalized as follows:

	wf

wc

 = 	w0,f

w0,c

 + 	�M,f

�M,c

�M − M0�

− �� f f � fc

�cf �cc
�	Pf

Pc

 − 	P0,f

P0,c

� �11�

with the following note: Pfi=g PPi, i=1, . . . ,nf, where g is a flag
variable, equal to 1 if the load is increasing, equal to −1 if, on the
contrary, the load is decreasing. Considering that wc=w0,c, from
the lower part of Eq. �11�, we obtain

�Pc� = �P0,c� + ��cc�−1���M,c��M − M0� − ��cf���Pf� − �P0,f���
�12�

As in the previous case, it is finally possible to compute the free
crack opening displacements �wf�,

�wf� = �w0,f� + ���M,f� − �� fc���cc�−1��M,c���M − M0�

+ ��� fc���cc�−1��cf� − �� f f����Pf� − �P0,f�� �13�

The last three equations are the kernel of the algorithm in the case
of repeated or cyclic loading.

Fig. 2 Decomposition of the load history into monotonic parts
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Numerical Procedure
Two possibilities are given for computing the static and kine-

matic unknowns for an assigned load M; the simplest way, pro-
posed by Carpinteri et al. �3�, is to consider the fact that the
system behavior is piecewise linear. Starting from the initial con-
dition, in which all fibers behave elastically �nc=n, nf =0�, the
authors consider that the most solicited reinforcement �say, the
jth� is the first to reach its plastic limit and compute the load
factor, which exactly gives Pj = PPj. After this first step, they set
Pj = PPj �nc=m−1, nf =1� and then compute the other reinforce-
ments actions from Eq. �12�; again, the system response is linear,
till the most solicited reinforcement �say, the kth� reaches its plas-
tic limit. Again, the load factor is computed, which gives Pk
= PPk, and then the procedure is iterated up to the maximum bend-
ing moment M. This algorithm, although efficient, has the disad-
vantage that, in the case of a high number of fibers, may require a
high number of numerical steps for describing a complete
loading-unloading cycle.

To overcome this limitation, the following iterative procedure is
proposed, in which the true unknowns are 2n+1, namely, the
crack openings �w�, the reinforcements indeterminate actions �P�
and the number nf of plasticized �or slipped� reinforcing elements.
The procedure is summarized in the following flowchart:

1. initialize nf �and nc=n−nf�.
2. compute bridging actions �Pc�, �Eq. �10� if nf 	 0, Eq. �12�

otherwise�.
3. loop entering condition if there are stresses outside the al-

lowed range:

Pi 
 PPi or Pi � − PPi.

a. Stresses exceeding or nearby the maximum are set to
the maximum:

Pi = min�Pi,PPi� .

b. Stresses below or nearby the minimum are set to the
minimum:

Pi = max�Pi,− PPi� .

c. Update nf �and nc�, if necessary.
d. Loop exit condition: if nf has been changed in step c.,

return to step 2, otherwise exit the loop.

4. Compute the crack openings �wf�, Eq. �13�.

The present model is able to capture the flexural behavior of
fiber-reinforced materials, with their hardening and the elastic-
plastic shakedown above certain load thresholds �3,39–43�, each
fiber yielding results in a slight decrease of the overall system
stiffness. A synthetic example is reported in Fig. 3 for the case of
four fibers: elastic, as well plastic, shakedown is clearly visible.

The advantage of the described procedure is that it allows one
to compute a complete loading-unloading cycle without the neces-
sity to compute the values of plastic �or shakedown� moments;
this point is very important if the model is used in fatigue calcu-
lations, where a large number of cycles should be simulated. An
example is reported in Fig. 4, where a complete loading unloading
cycle is represented in terms of bending moment versus localized
rotation �note that both quantities are expressed in nondimensional
or normalized form; the normalization factors are M0=KIcbh3/2

and �0=KIC / �E�h��. The continuous line corresponds to the pro-
cedure by Carpinteri et al. �3�, the circles being the values of the
moment at which reinforcements attain their limits, either in ten-
sion or in compression; the dotted line corresponds to the present
iterative procedure, with the complete cycle approximated by
means of only ten points. The drawback of this procedure is rep-
resented by a small error in the evaluation of the dissipated energy
per cycle, which is slightly underestimated, as could be seen in the
graph of Fig. 4 �the gray-shaded area corresponds to the error,
which is �5%�.

Crack Propagation and Energy Dissipation Capability
Thus far, the algorithm considers only the system behavior at a

fixed crack length a; nevertheless, it is clear that, in real problems,
the crack may propagate. There are several ways of including
crack propagation in the bridged crack model; most of the papers
available in the literature consider directly an empirical crack
propagation criterion according to the Paris and Erdogan law �46�,
as for instance, in Matsumoto, and Li �47� and Carpinteri et al.
�3,43�. This is probably because these papers are focused on the
fatigue modeling of the fibrous composite. On the contrary, in
those papers in which the focus is on the constitutive flexural
behavior of the composite beam, crack propagation is
introduced—consistently with the model premises—on the basis
of linear elastic fracture mechanics �LEFM�.

In virtue of the superposition principle, the total stress intensity
factor KI is the sum of two contributions: that due to the externally
applied bending moment M and that of the n forces applied on the

Fig. 3 Typical moment-rotation response, with evidence of
elastic „2… and plastic „3–5… shakedown

Fig. 4 Moment versus rotation relation for a specimen with
n�50 reinforcements: complete loading-unloading cycle. The
continuous line with circles represents the outcome of the ex-
act algorithm proposed in †3‡, whereas the dotted one reports
results of the iterative procedure.
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crack surfaces, due to the reinforcements, both defined in �32�.
Equating the total stress intensity factor KI to its critical value KIC,
the fracture propagation moment MF is obtained. Its value is given
by the following relation:

MF

bh3/2KIC
=

1

YM����1 + NP�
i=1

n

i
�i

�
YPi ci

h
,��� �14�

where Ym and YPi, i=1, . . . ,n, are the shape functions already
defined, �=a /h is the relative crack depth, and i is the ratio of
the actual value of the force carried by the ith reinforcement to its
limit value at plastic flow. The brittleness number NP that appears
in Eq. �14� is defined as �1�

NP = �
�yh

1/2

KIC
�15�

where � is the volume fraction of the fibers. This parameter is the
fundamental quantity governing the system behavior: the higher
NP, the more ductile the system behavior results to be �1,2,32–35�.

As evidenced first by Carpinteri and Carpinteri �39� for the case
of one fiber, by Carpinteri and Puzzi for the case of two fibers �41�
and by Carpinteri et al. �3� for the case of three or more fibers, the
value of fracture propagation moment MF could be higher or
lower than MSD �and even MP�, depending on the values of � and
NP. In other words, by varying the fundamental parameters that
describe the composite beam, it is possible to pass from a ductile
to a brittle behavior, in which fracture propagation precedes the
onset of shakedown and, in some cases, even the onset of fiber
slippage. In these latter cases, it is evident that the composite is
not able to dissipate any energy if subjected to repeated or cyclic
loading.

The easiest effect to ascertain is that of crack length �: typically,
the most brittle behavior is found when � is higher, whereas short
to medium crack lengths usually lead to the presence of elastic or
plastic shakedown. However, the combined effect of all param-
eters must be investigated, since the above statement is valid only
in the case of a medium to high value of the brittleness number
NP: on the contrary, if NP is very low �which corresponds to the
case of lightly reinforced beams�, shakedown appears at almost
any crack length �see examples for one and three fibers in �39� and
�3�, respectively�.

In order to gain a more complete information, we performed a
detailed analysis by varying the number of fibers n and the brittle-
ness number NP at a constant crack length. By doing so, we could
evaluate the effect of an increase in both the fiber number and the
brittleness number NP. Results are summarized in Fig. 5, where,
by varying the fiber number n from 1 up to 150 and the brittleness
number NP from 0.01 up to 2.00, five distinct zones are obtained.
The considered crack depth is �=0.3, and the fibers are equally
spaced. In the first zone, marked by �A�, the combination of a very
low fiber number and a sufficiently high brittleness number pro-
vides the most brittle system response, with unstable fracture pre-
ceding the fiber yielding �or slippage�. In the second zone, marked
by �B�, at least one fiber undergoes yielding, but the fracture mo-
ment always precedes the onset of plastic shakedown. In the third
one, marked by �C�, all fibers undergo yielding, but plastic shake-
down is again ruled out by unstable crack propagation. By further
decreasing the brittleness number, or by further increasing the
fiber number, a more ductile system behavior could be obtained:
In zone �D�, in fact, plastic shakedown of one or more fibers
occurs, therefore providing a more ductile system response, with
greater capacity of energy dissipation under repeated and cyclic
loading condition. Eventually, the most favorable condition is met
only in the case of a very low brittleness number; in this case,
which corresponds to the zone marked by �E� in Fig. 5, all rein-
forcements undergo plastic shakedown and the energy absorption
capacity is maximum. In Fig. 5�b�, a zoom on the lower values of
n is reported in order to clearly observe the bounds of the zone
�A�. It can be noted that the upper bound is almost horizontal;

therefore, the most brittle behavior may occur only in the case of
a beam with a very low number of fibers, namely, only in the
cases of n=1 or 2.

Thus, the following conclusions could be drawn from the ob-
tained graphs: In order to have great energy dissipation and prob-
ably longer fatigue life, the brittleness number should be not too
high, while an increase of the fiber number is, in general, benefi-
cial. Eventually, it could be remarked that, if the crack length is
varied, then a similar diagram is obtained in which all curves shift
toward the upper-left direction if the crack length is increased �or,
conversely, towards the lower-right direction if the crack length is
decreased�. In other words, as previously observed, longer cracks
produce a more brittle behavior. If we introduce a third axis for
representing the crack length, the curves of Fig. 5 expand into
manifolds, which give a complete information about the combined
effects of �, NP and n on the energy dissipation capability of the
reinforced composite beam.

It is evident that the proposed crack propagation criterion,
based on the LEFM solution for a crack crossed by fibers, results
in a threshold function for the external load: if the load remains
below it, then the crack does not propagate; otherwise, if the load
overcomes it, then the crack starts propagating. The crack propa-
gation stability has been addressed by Carpinteri and co-workers

Fig. 5 Effect of fiber number n and brittleness number NP on
the system response type and energy dissipation: „A… very
brittle to „E… very ductile. Graph „a… presents the whole diagram
and „b… shows a zoomed view of the portion near the axes
origin.
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in several papers �2,32–35�. It has been shown, in the case of
monotonic loading that the crack propagation may be catastrophic
or not, depending on the brittleness number. In the former case,
which corresponds to structures badly reinforced �low values of
NP�, the crack propagation is not stable and phenomena of insta-
bility �both of the snap-back and/or the snap-through type� are
possible. In the latter case, which corresponds to more heavily
reinforced composite beams �with higher values of NP�, the crack
propagation stops after a certain amount, thanks to the bridging
actions, which avoid the crack to prosecute.

In the case of cyclic loading, the same behavior may happen
and the equality M =MF, i.e., external load equal to the fracture
propagation moment, may not bring to brittle failure, as was the
case, for instance, in the paper by Carpinteri et al. �3�. This could
obviously be the case, but not in general. There is no particular
reason, if cyclic loading is considered, for obtaining a constitutive
composite behavior different from that obtained in the case of
monotonic loading, at least if the loading frequency is not too
high. Furthermore, there is an additional reason for considering
that the function MF��� is not always a decreasing function of �,
in particular, if fiber-reinforced composites are modeled: In this
case, in fact, crack propagation involves crossing of new intact
fibers, which exert their actions across the crack wake. In this
case, the sum in Eq. �14� changes its upper limit n, which is
increased. The physical resulting effect is a possible increase of
MF as the crack propagates.

In order to take into consideration the above remarks, the nu-
merical algorithm with crack propagation may be constructed as
follows: if the external load overcomes the threshold value MF,
then the crack length is increased; as a consequence, all compli-
ances, displacements, reinforcement reactions, and MF have to be
updated. The crack length is increased until one of the following
occurs: either failure of the composite beam is achieved or the
value of the fracture propagating moment overcomes the external
loading value: M �MF. In the latter case, crack propagation stops
and the algorithm prosecutes as shown before. The algorithm is
summarized in the following chart, in which internal procedure
2.a is the iterative procedure previously outlined:

1. Data initialization and computation of initial compliances
2. Loop for any given load M�k� �the apex �k� indicates the kth

iteration�:

a. Iterative procedure for the computation of Pi
�k�, wi

�k�

�i=1, . . . ,n�, ��k�, and nc
�k�, nf

�k�

b. Computation of the fracture propagation moment
MF

�k�, Eq. �14�
c. Crack propagation condition: M�k�
MF

�k�

i. Update crack depth a�k�

ii. Update number of fibers n�k� across the crack and
compliances

iii. Return to step 2.a

d. Check for load inversion: If load is inverted, then up-
date values of variables �P0�, �w0�, �0.

This algorithm has the advantage that it allows one to simulate not
only the dead load condition, but also the fixed grip condition,
which is sometimes used also in the case of repeated loading �48�.
In the latter case, it is possible to reproduce the complete soften-
ing behavior of the structure, with the envelope of the maxima of
the cycles being coincident with the moment-rotation diagram ob-
tained from the bridged crack model in the case of monotonic
loading.

Two examples are reported in Fig. 6; they refer to a composite
beam with n=2 reinforcements equally spaced in an initial crack
of length �=0.3. The system response is represented in terms of
moment-rotation relation, expressed, as before, through normal-
ized �or nondimensional� quantities. The response of a beam char-

acterized by NP=0.05 is reported in Fig. 6�a�, whereas in Fig. 6�b�
that of a beam with NP=0.15 is presented. Both diagrams clearly
evidence the softening branch; as expected, the beam with higher
brittleness number �Fig. 6�b�� exhibits higher load levels �higher
cracking resistance� and also higher plastic deformations. Never-
theless, the beam in Fig. 6�b� exhibits plastic shakedown of only
one reinforcement, while the beam 6�a� of both of them. In fact, if
we look at Fig. 5�b�, we could note that the beam in Fig. 5�b� is
contained in the region marked by �D�, while the beam 5�a� lies in
region �E�. Furthermore, as the crack propagates, the beam in Fig.
5�b� is no longer able to dissipate energy, since the shakedown
disappears, being preceded by crack propagation. This effect is
due to the fact that the lines in Fig. 5 shift towards the upper-left
corner as the crack propagates, as already remarked. On the con-
trary, the beam in Fig. 6�a� continues to display hysteretic cycles
as the crack propagates. As a result, the more ductile composite
beam �with higher NP� does not dissipate a larger amount of en-
ergy. This fact is even more clear if we compare the beams under
the same external bending load, M /M0=0.2, as shown in Fig. 6.
The beam in Fig. 6�a� describes a hysteretic cycle, therefore dis-
sipating energy whereas the beam in Fig. 6�b� is not able to dis-
sipate any energy, presenting only elastic shakedown.

The above example clearly evidences that, when repeated load-
ing is considered, the brittleness number is not enough to charac-
terize the beam behavior. In fact, the beam with higher NP does
not necessarily result in being the more ductile, with reference to

Fig. 6 Repeated loading „fixed grip condition… of a composite
beam with two reinforcements and initial crack length �=0.30;
NP=0.05 and NP=0.15 in „a… and „b…, respectively. Large hyster-
esis loops are visible only in „b….
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hysteretic energy dissipation. It is also evident the relevance of the
diagram reported in Fig. 5. This diagram allows to evaluate, for
instance, if an increase in n is beneficial or not to the beam, in
terms of the increase in energy dissipation. If we consider, for
instance, a beam with NP=0.05, initial crack length �=0.3 and
n=1, an increase to n=3 leads to a greater amount of energy
dissipation and to a longer fatigue life �as in the example reported
by Carpinteri et al. �3��. In fact, the increase in n determines a
transition from zone �C� to zone �D�, where plastic shakedown
occurs; see Fig. 5�b�. If we consider a larger brittleness number,
for instance, NP=0.5, the same increase in fiber number does not
lead to any improvement of the reinforced beam, since in the latter
case the beam remains within zone �C�, where no shakedown
occurs. As a consequence, no energy dissipation occurs and the
increase in n is not effective.

Conclusions
In this paper, we presented some issues in the modeling of

brittle matrix composites with discontinuous reinforcements under
the condition of repeated bending loading. In particular, address-
ing the case of composites with high number of reinforcements,
we proposed a new iterative procedure applied to the bridged
crack model �1,2�. Furthermore, we analyzed the combined effects
of crack length, brittleness number, and fiber number on the cyclic
behavior of the composite beam, drawing interesting consider-
ations about hysteretic energy dissipation in the composite beam.
Eventually, we analyzed crack propagation by modeling it with a
fracture-mechanics-based criterion and showed examples of simu-
lations of repeated bending tests under fixed grip conditions.
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Nomenclature
Ai 	 cross-sectional area of the ith reinforcement
E 	 Young’s modulus of the matrix

KIC 	 critical value of the Stress-Intensity Factor
M 	 bending moment

MF 	 crack propagation moment
MP 	 plastic bending moment

MSD 	 plastic shake-down moment
M0 	 value of bending moment at load inversion

N 	 total number of reinforcements
NP 	 brittleness number
�P� 	 vector of the reinforcement actions

�P0� 	 vector of the reinforcement actions at load
inversion

Pi 	 ith reinforcement action
PPi 	 limit value of the ith reinforcement action
YM 	 shape function for the stress intensity factor
YPi 	 shape function for the stress intensity factor

a 	 crack length
b 	 section thickness
ci 	 position of the ith reinforcement
g 	 flag variable �	1 loading, =−1 unloading�
h 	 section height
n 	 number of reinforcements across the crack

wake
nc 	 number of non-plasticized reinforcements
nf 	 number of plasticized reinforcements

�w� 	 vector of the crack openings
�w0� 	 vector of the crack openings at load inversion

wc 	 free crack opening
wf 	 constrained crack opening

wi 	 total crack opening at the level of the ith
reinforcement

wiM 	 crack opening at the level of the ith reinforce-
ment, due to the bending moment M

wij 	 crack opening at the level of the ith reinforce-
ment, due to a pair of forces Pj

i 	 ratio of the actual value of the force carried by
the ith reinforcement to its limit value

�l 	 cracked section length
��� 	 matrix of extensional-extensional compliances

��M� 	 vector of extensional-bending compliances
�iM 	 extensional-bending local compliance of the

cracked beam
�ij 	 extensional-extensional local compliance of the

cracked beam
�MM 	 bending-bending local compliance of the

cracked beam
� 	 total local rotation of the cracked beam
�i 	 local rotation due to a pair of forces Pi

�M 	 local rotation due to the bending moment M
� 	 total reinforcement percentage
�i 	 reinforcement percentage of the ith

reinforcement
�y 	 reinforcement yield strength

� 	 normalized crack length
� 	 normalized coordinate related to the bottom of

the cross section
�i 	 normalized position of the ith fiber
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Exact Solutions for Free-Vibration
Analysis of Rectangular Plates
Using Bessel Functions
A novel Bessel function method is proposed to obtain the exact solutions for the free-
vibration analysis of rectangular thin plates with three edge conditions: (i) fully simply
supported; (ii) fully clamped, and (iii) two opposite edges simply supported and the other
two edges clamped. Because Bessel functions satisfy the biharmonic differential equation
of solid thin plate, the basic idea of the method is to superpose different Bessel functions
to satisfy the edge conditions such that the governing differential equation and the bound-
ary conditions of the thin plate are exactly satisfied. It is shown that the proposed method
provides simple, direct, and highly accurate solutions for this family of problems. Ex-
amples are demonstrated by calculating the natural frequencies and the vibration modes
for a square plate with all edges simply supported and clamped.
�DOI: 10.1115/1.2744043�

1 Introduction

The free-vibration analysis of a rectangular plate is of interest
in the field of mechanics, civil, and aerospace engineering. Back
in 1823, by using a double trigonometric series, Navier obtained
the exact solution of bending of a rectangular plate with all edges
simply supported �1�. In 1899, by using a single Fourier series,
Levy developed a method for solving the rectangular plate bend-
ing problems with two opposite edges simply supported and the
two remaining opposite edges with arbitrary conditions of sup-
ports �2�. In 1934, Way obtained the exact solutions for the large
deflection analysis of a clamped circular plate �3�. For the free-
vibration analysis of rectangular plates, accurate analytical results
were presented for the cases having two opposite sides simply
supported, whereas the other cases with the possible combinations
of clamped, simply supported, and free edge conditions were ana-
lyzed by using the Ritz method by Leissa in 1973 �4�. In addition,
the method of superposition was proposed by Gorman to examine
free-vibration analysis of cantilever plates in 1976 �5� and that of
rectangular plates with a combination of clamped and simply-
supported edge conditions in 1977 �6�.

More recently, many papers on the vibration analysis of rectan-
gular plates have been published �7–10�. The free-vibration analy-
sis of isotropic and anisotropic rectangular thin plates subjected to
general boundary conditions was conducted by using a modified
Ritz method by Narita in 2000 �10�. For centuries, however, an
exact solution for a fully clamped rectangular plate has not yet
been obtained, and it is currently considered that an exact solution
is not achievable for the rectangular plate problem of this type.

In this paper, a Bessel function method is proposed to obtain an
exact solution for the vibration problems of a rectangular plate by
superposing different Bessel functions to satisfy three edge con-
ditions: �i� fully simply supported, �ii� fully clamped, and �iii� two
opposite edges simply supported and the other two edges
clamped. By employing the proposed method, the exact solutions
of the natural frequencies and mode shapes can be obtained for
the rectangular thin plate with the aforementioned edge condi-
tions. This new method provides simple, direct, and highly accu-
rate solutions for this family of problems.

2 Thin Plate Theory
The free harmonic vibration of a thin plate with a constant

thickness h is governed by the differential equation

D�4W − �2�hW = 0 �1�

where W�x ,y� is a typical mode, �4 is the biharmonic differential
operator �i.e., �4=�2�2, �2=�2 /�x2+�2 /�y2 in Cartesian coordi-
nates�, D=Eh3 /12�1−�2� is the bending rigidity with E and �
being the Young’s modulus and the Poisson’s ratio, respectively, �
is the natural frequency, and � is the mass density.

For a finite solid circular plate, the nth vibration mode of Eq.
�1� in polar coordinates is �11�

Wn�r,�� = �AnJn�kr� + BnIn�kr��
cos

sin
�n�� �2�

where An and Bn are constants to be determined, Jn and In are the
Bessel function and the modified Bessel function of the first kind
of order n, respectively, and k4=�2�h /D.

Thus, in Cartesian coordinates, Eq. �2� can be converted into

Wn�x,y� = �AnJn�k�x2 + y2� + BnIn�k�x2 + y2��
cos

sin
�n atan � y

x
�	

�3�

According to �12�, there exist the addition formulas,

Jn�R�
cos

sin
n� = 


m=−�

�

Jn−m�x�Jm�y�
cos

sin
m� �4a�

and

In�R�
cos

sin
n� = 


m=−�

�

In−m�x�Im�y�
cos

sin
m� �4b�

where � is defined as R cos �=x−y cos �, R sin �=y sin �, and
when y approaches 0, � approaches 0.

To satisfy �=atan�y /x�, �=� /2 is selected. Then, Eq. �3�
becomes
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Wn�x,y� = 

m=−�

�

�AnJn−m�kx�Jm�ky� + BnIn−m�kx�Im�ky��
cos

sin
�m�

2
�

�5�

Equation �5� is the general solution for the vibration modes of
solid rectangular plates, where An and Bn can be determined by
use of the orthogonal characteristic of these vibration modes. It is
noted that Jn−m�kx�Jm�ky� and In−m�kx�Im�ky� are the core parts of
the solution, which can be further adopted to construct the free-
vibration solutions of a rectangular thin plate with different edge
conditions. By superposing these Bessel functions to satisfy the
edge conditions of a rectangular plate, the exact solution for the
free vibration can be obtained. We call this approach the Bessel
function method. It will be applied to analyze the free vibration of
a rectangular plate with three edge conditions in the sequel.

3 Free-Vibration Analysis of a Rectangular Plate Un-
der Different Edge Conditions

For a rectangular plate with edge lengths a and b, there are
eight boundary conditions for every case. Three cases are dis-
cussed below: �i� fully simply supported, �ii� fully clamped, and
�iii� two opposite edges simply supported and the other two edges
clamped.

3.1 Fully Simply Supported Rectangular Plate. In this case,
the boundary conditions are

�W�x=0 = 0, �W�x=a = 0, � �2W

�x2 �
x=0

= 0, � �2W

�x2 �
x=a

= 0

�W�y=0 = 0, �W�y=b = 0, � �2W

�y2 �
y=0

= 0, � �2W

�y2 �
y=b

= 0 �6�

In order to satisfy all the above edge conditions, the vibration
mode function can be constructed as

Wn,m = �AnJn−m�kx� + Jn−m�k�a − x���Jm�ky� + Jm�k�b − y���

+ BnIn−m�kx� + In−m�k�a − x���Im�ky�

+ Im�k�b − y���� sin
m�

2
cos

n�

2
�7�

where the mode subscripts m and n are odd and even numbers for
nontrivial solutions, respectively. Based on the following proper-
ties of the special functions:

Jm�0� = Im�0� = �1 m = 0

0 m � 0
�8a�

Jm� �0� =�
− 1

2
m = 0

1

4
m = ± 2

0 others

�8b�

and

Im� �0� =�
1

2
m = 0

1

4
m = ± 2

0 others

�8c�

for the case of a=b, Eq. �7� satisfies all the edge conditions pro-
vided that m=n /2 and

det�Jn−m�ka� In−m�ka�
Jm� �kb� Im� �kb�

� = 0 �9�

Equation �9� is the frequency equation for the fully simply sup-
ported square plate.

For a fully simply supported rectangular plate, the well-known
exact solution for the free-vibration analysis was obtained by
Navier �1�. In the Navier-type solution, the mode functions and
natural frequencies are �4,13�

Wm,n = Am,n sin
m�x

a
sin

n�y

b
, �m,n = 1,2, . . . � �10a�

k2 = �m�

a
�2

+ �n�

b
�2

�10b�

The free-vibration solutions expressed in Eqs. �7� and �9� by the
proposed Bessel function method are different from the Navier-
type solutions due to the different derivation processes. In the
former method, using the Bessel functions in Eq. �5� that satisfy
the governing equation �1�, and Eq. �7� is constructed to satisfy
the edge conditions in Eq. �6�. In the Navier-type solutions, the
double Fourier sine series in Eq. �10a� was constructed to satisfy
the edge conditions, whereas Eq. �10b� was obtained from Eq. �1�.
Table 1 compares the first ten nondimensional natural frequencies
ka of a square plate with an edge length of a obtained from Eqs.
�9� and �10b�, applying the Bessel function method and the
Navier-type solution, respectively. It is noted that the two kinds of
solutions are different in the sense that the Navier-type natural
frequencies are relatively sparse. Because the frequency equations
are both derived exactly from the mode function expansions, con-
sidering the convergence of Eq. �7�, the natural frequency solu-
tions from Eq. �9� are exact and a complement to the Navier-type
solutions.

3.2 Fully Clamped Rectangular Plate. A fully clamped rect-
angular plate has the boundary conditions

Table 1 Comparison of the nondimensional natural frequen-
cies using two different methods for a fully simply supported
square plate

Order
Present theory

in Eq. �9�
Navier-type solution
shown in Eq. �10b�

1 3.6744 4.4429
2 6.2931 7.0248
3 6.9380 8.8858
4 8.7100 9.9346
5 9.7066 11.3272
6 10.1215 12.9531
7 11.0385 13.3286
8 12.2961 14.0496
9 12.9751 15.7080
10 13.2846 17.7715

Table 2 Comparison of the nondimensional natural frequen-
cies using three different methods for a fully clamped square
plate

Order
Present theory

in Eq. �14�
Rayleigh-Ritz
method �14�

Finite element method
�15�

1 5.9057 5.9992 5.9540
2 8.3466 8.5680 8.4870
3 9.1969 10.4053 10.1833
4 10.6870 11.4734 11.3759
5 11.8367 11.5000 11.4140
6 12.4022 12.8511
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�W�x=0 = 0, �W�x=a = 0, � �W

�x
�

x=0

= 0, � �W

�x
�

x=a

= 0

�W�y=0 = 0, �W�y=b = 0, � �W

�y
�

y=0

= 0, � �W

�y
�

y=b

= 0

�11�
The vibration mode function in this case can be constructed as

Wn,m = �AnJn−m�kx� + Jn−m�k�a − x���Jm�ky� + Jm�k�b − y���

+ BnIn−m�kx� + In−m�k�a − x���Im�ky�

+ Im�k�b − y���� cos
m�

2
cos

n�

2
�12�

where m and n are even numbers. For the fully clamped square
plate �a=b�, since

Jm� �0� =�
1

2
m = 1

− 1

2
m = − 1

0 others

�13�

all the above conditions can be satisfied with m=n /2, m�0, and

det�Jn−m�ka� In−m�ka�
Jm� �kb� Im� �kb�

� = 0 �14�

Equation �14� is the frequency equation for the fully clamped
plate.

In order to verify Eq. �14�, we compared the nondimensional
frequencies ka of the fully clamped square plate obtained from
Eq. �14�, the Rayleigh-Ritz method �14�, and the finite element
method �15�. The comparison is summarized in Table 2. As shown
in Table 2, the first two natural frequencies derived from Eq. �14�
employing the Bessel function method are very close to those
from the Rayleigh-Ritz method and the finite element method, and

the discrepancy among them is 	3%. It is also known that the
results obtained by the Rayleigh-Ritz method constitute upper
bounds for the natural frequencies. As shown in Table 2, the first
six natural frequencies from the Rayleigh-Ritz method are almost
all higher than the first six exact eigenfrequencies from Eq. �14�.
Therefore, the frequency equation of the Bessel function method
for the fully clamped plate is verified.

3.3 Rectangular Plate With Two Opposite Edges Simply
Supported and the Other Two Edges Clamped. The rectangular
plate in this case has the boundary conditions

�W�x=0 = 0, �W�x=a = 0, � �2W

�x2 �
x=0

= 0, � �2W

�x2 �
x=a

= 0

�W�y=0 = 0, �W�y=b = 0, � �W

�y
�

y=0

= 0, � �W

�y
�

y=b

= 0

�15�
The vibration mode function in this case can be constructed from

Wn,m = �AnJn−m�kx� + Jn−m�k�a − x�� − Jn−m�ka� − Jn−m�0��


 Jm�ky� + Jm�k�b − y�� − Jm�kb� − Jm�0�� + BnIn−m�kx�

+ In−m�k�a − x�� − In−m�ka� − In−m�0��Im�ky� + Im�k�b − y��

− Im�kb� − Im�0��� exp �m�i

2
� �16�

where n is an even number. For the case of a=b, all the boundary
conditions are satisfied when m=n /2, m�0, ±1, ±2, and

det �Jn−m� �ka� In−m� �ka�
Jm� �kb� Im� �kb�

� = 0 �17�

Equation �17� represents the frequency equation for this case.
Therefore, the vibration mode functions and frequency equa-

tions of the rectangular plate with different edge conditions:
�i� fully simply supported, �ii� fully clamped, and �iii� two oppo-

Fig. 1 Vibration mode functions with n=2 and m=1 for a fully simply sup-
ported plate at different nondimensional natural frequencies: „a… ka=3.6744
and „b… ka=10.1215
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site edges simply supported and the other two edges clamped,
have been derived as Eqs. �7� and �9�, Eqs. �12� and �14�, and Eqs.
�16� and �17�, respectively. Based on the derived equations above,
the modes shapes and natural frequencies can be obtained.

4 Numerical Illustrations

In this section, the different vibration mode functions of the
square plate with two different edge conditions: �i� fully simply

Fig. 2 Vibration mode functions with n=6 and m=3 for a fully simply sup-
ported plate at different nondimensional natural frequencies: „a… ka=9.7066
and „b… ka=12.9751

Fig. 3 Vibration mode functions with n=4 and m=2 for a fully clamped square
plate at different nondimensional natural frequencies: „a… ka=12.4022 and „b…
ka=15.5795
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supported and �ii� fully clamped, are calculated with an edge
length of a=0.18 m. Figures 1�a� and 1�b� show the vibration
mode functions distribution and the corresponding contours for a
fully simply supported rectangular plate with n=2 and m=1 at a
nondimensional natural frequency of 3.6744 and 10.1215, respec-
tively. As shown in Fig. 1�a�, it can be seen that, at the lowest
natural frequency ka=3.6744, the boundary conditions in Eq. �6�
are satisfied from the mode distribution and Eq. �7� is validated. In
the contour shown at the right-hand side, the only one peak is
observed at the center of the square plate. In Fig. 1�b�, it is ob-
served that the number of peaks increases as the order of the
vibration mode becomes higher. The corresponding contour at the
right-hand side shows the distribution of the peaks on the plate
under investigation. Figures 2�a� and 2�b� show the vibration
mode functions distribution and the corresponding contours for a
fully simply supported rectangular plate with n=6 and m=3 at a
nondimensional natural frequency of 9.7066 and 12.9751, respec-
tively. As shown in Fig. 2, when n and m vary, the boundary
conditions in Eq. �6� are also satisfied and Eq. �7� is validated.
Figures 3�a� and 3�b� show the vibration mode functions and the
corresponding contours for a fully clamped rectangular plate with
n=4 and m=2 at a nondimensional natural frequency of 12.4022
and 15.5795, respectively. As can be seen in Fig.3, the boundary
conditions are satisfied by employing the Bessel function method
and the derived equations are validated.

5 Conclusions
A novel Bessel function method is presented and used to obtain

the exact solutions for the free-vibration analysis of a rectangular
plate with three different edge conditions: �i� fully simply sup-
ported, �ii� fully clamped, and �iii� two opposite edges simply
supported and the other two edges clamped. This proposed
method provides the exact solutions for the natural frequencies
and mode shapes of a rectangular plate. Because of the high ac-
curacy provided by the proposed method, it can be used to verify
other free-vibration analyses and to evaluate the precision of com-
mercial software. The direct exact solutions obtained for the most

fundamental structural element employing the proposed method
will serve as a base of and provide an insight into the analysis of
complex structures.
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Airflow-Housing-Induced
Resonances of Rotating Optical
Disks
Numerous excitation sources for disk vibrations are present in optical drives. For in-
creasing rotation speeds, airflow-housing-induced vibrations have become more and
more important. Currently, drives are designed in which rotation speeds are so high that
critical speed resonances may show up. The presence of these resonances depends on the
layout of the inner housing geometry of the drive. The influence of the drive inner housing
geometry is investigated systematically by means of a numerical-experimental approach.
An analytical model is derived, containing disk dynamics and the geometry-induced
pressure distribution acting as the excitation mechanism on the disk. The Reynolds’
lubrication equation is used as a first approach for the modeling of the pressure distri-
bution. The model is numerically implemented using an approach based on a combina-
tion of finite element and finite difference techniques. An idealized, drive-like environment
serves as the experimental setup. This setup resembles the situation in the numerical
model, in order to be able to verify the numerical model. Wedge-like airflow disturbances
are used in order to obtain insight into the influence of drive inner geometry on the
critical speed resonances of optical disks. A disk tilt measurement method is designed that
yields a global view of the disk deformation. By means of two newly proposed types of
plots, numerical and experimental results can be compared in a straightforward way. A
qualitative match between the numerical and experimental results is obtained. The nu-
merical and experimental methods presented provide insight into airflow-housing-
induced vibrations in optical drives. Additionally, reduction of some critical speed reso-
nances is found to be possible for certain drive inner geometry
configurations. �DOI: 10.1115/1.2745356�

Keywords: rotating disk dynamics, disk modes, airflow-induced vibration, critical speed
resonance, drive inner housing geometry

1 Introduction
In optical data storage, polycarbonate disks are used as the

medium for data recording. Since these disks are relatively thin,
they are weak in the transverse �out-of-plane� direction, which
makes them susceptible to transverse vibrations. Numerous exci-
tation mechanisms for these vibrations are present in optical
drives; for instance, imbalance, shocks, and suspension flexibility.
Due to increasing demands on the read-out speeds of the disk,
airflow-induced vibrations have become more and more important
due to higher rotation speeds. For example, an optical pickup unit
�OPU� operating close to the rotating disk acts as a local excita-
tion due to the air that has to flow through the narrow opening
between the OPU and the disk. As a result, disk modes are always
excited to a certain extent. Currently, rotation speeds in optical
storage devices are such that critical speed resonances of optical
disks can show up, resulting in large tilt in the disk in both the
radial and tangential/circumferential directions. This phenomenon
was discovered during the writing process of DVDs, which is
performed using a constant data rate. During writing, the rotation
frequency decreases with radial position on the disk. At certain
radial positions, the number of writing errors exceeded the maxi-
mum allowable value. Rotation frequencies at which this occurred
have been found to correspond with critical speeds of the disk.

In the field of rotating disk dynamics, extensive research has
been performed. The study on the vibrations of spinning disks was
first reported in Lamb and Southwell �1� and Southwell �2�. Since

then, much research on this topic has been performed. Among the
more recent investigations has been d’Angelo �3�, who has shown
that clamping of the disk is important in terms of stiction and slip.
Furthermore, the clamping radius is found to have a large influ-
ence on the natural frequencies. Chen and Bogy �4� have investi-
gated the influence of system parameters on the eigenvalues of the
system. Malhotra et al. �5� have derived the equations of motion
for a rotating disk, containing both bending and membrane
�stretch� effects. Several methods are described to approximate the
response of the disk. Chung et al. �6� have analyzed the free
vibrations of a spinning disk. Using a Galerkin method, approxi-
mations for the natural frequencies, mode shapes, and critical
speeds of a freely spinning disk have been obtained. Furthermore,
their dependency on the rotation frequency �due to stretching of
the disk� has been investigated. Jia �7� has derived the equations
of motion for a spinning disk, using energy considerations
�Hamilton’s principle�. The effect of centrifugal flattening is ex-
plained, which causes a decrease of the initial disk warpage as the
rotation speed increases. Lee et al. �8� have numerically predicted
critical speeds of optical disks and have compared these with ex-
perimental results, obtaining a good match. Furthermore, the ef-
fect of flutter �self-excited, aerodynamically induced disk vibra-
tions� has been discussed and is measured in the experiments.
Chung et al. �9,10� have analyzed the dynamics of a rotating disk
with angular acceleration and eccentricity, respectively. Stationary
in-plane motion is assumed, whereas transverse motion is as-
sumed to be dynamic. The transverse motion is obtained by using
Galerkin techniques. Eccentricity is found to result in distortion of
mode shapes and an increase in critical speed for the lowest mode.
Heo and Chung �11� have performed a similar analysis for angular
misalignment �rigid-body tilt�. This has been found to result in a
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“beating” phenomenon both for the in-plane and transverse disk
response. Lee et al. �12� have experimentally determined that
critical speeds for spinning disks are higher in vacuum situations,
caused by lack of added mass effects of the air surrounding the
disk.

Interaction between a rotating disk and a stationary load system
or airflow has been reported in the following references. Pelech
and Shapiro �13� have considered a flexible disk rotating on a gas
film close to a wall. The air film height is extremely small with
respect to the disk radius, resulting in very small Reynolds num-
bers. Benson and Bogy �14� have discussed the steady deflection
of a very flexible spinning disk due to a stationary fixed transverse
load. Transverse stiffness has to be included in the analysis as
membrane theory has proven to be unable to solve this problem.
Adams �15� has analyzed the interaction between a flexible disk
and a read/write head by assuming a steady, axisymmetric fluid
flow in the interaction region. The disk and fluid equations are
solved separately and then combined. Licari and King �16� have
described the development of a numerical model �finite element
method �FEM� combined with finite differences� to simulate the
interaction between a magnetic recording head and a rotating flex-
ible disk. The Reynolds equation is used for modeling the head-
disk interaction. Carpino and Domoto �17� also have investigated
a rotating disk near a flat plate. The Reynolds equation is used to
model the incompressible and laminar airflow. The solution to the
coupled partial differential equations is found from an axisymmet-
ric part and a linearized nonaxisymmetric part. The total solution
is found by combining these two parts. Adams �18� has considered
an elastic disk subjected to a point load and rotating close to a
stationary baseplate. Four different airflow models have been con-
sidered, including the Reynolds equation. For each disk mode, the
airflow is accounted for by a stiffness and damping parameter.
Kim et al. �19� have considered a disk, rotating in a cartridge.
Computational fluid dynamics �CFD� calculations show that ob-
jects, present in the airflow, considerably affect the velocity field
of the airflow in the cartridge. The pressure distribution acting on
the disk has been found to be closely related to the inner shape of
the cartridge. Tatewaki et al. �20� have performed numerical simu-
lations of unsteady airflow in hard disk drives. The pressure-time
series obtained in this way has been applied on a FEM model of
the disks. The presence of the read/write head is found to have a
large influence on the response. Naganathan et al. �21� and Bajaj
et al. �22� have performed a numerical study of a flexible disk,
rotating near a rigid wall. Based on Pinkus and Lund �23�, the full
Navier-Stokes equations for the airflow are simplified and the
Reynolds equation for cylindrical geometry is obtained. The
coupled disk-fluid partial differential equations are discretized us-
ing finite differences and are solved directly. Self-excited vibra-
tions are found to occur due to coupling between dynamics of the
disk and hydrodynamics of the fluid.

Changes in the inner housing geometry of drives have been
found to influence the presence of critical speed resonances, due
to changes in airflow. In this paper, the influence of drive inner
housing geometry on the critical speed resonances in optical disks
is investigated both numerically and experimentally in a system-
atic way. For this purpose, a measurement setup is designed,
which consists of an idealized drive containing simplified inner
housing geometry. Furthermore, a new method is developed to
measure disk deformation in the experimental setup. Moreover, a
numerical model is developed, which describes the effect of
airflow-housing-induced excitation on a rotating optical disk. Fi-
nally, new methods for presenting both the numerical and experi-
mental results are proposed by means of two new types of plots:
so-called avalanche plots and maximum absolute tilt plots. As an
additional result of the systematic investigation of the influence of
inner housing geometry, some reduction of critical speed reso-
nances is found to be possible for certain inner housing geom-
etries.

The outline for this paper is as follows. In Sec. 2, some theo-

retical background on disk dynamics will be given. A model for
the disk and the airflow will be presented in Sec. 3, together with
the underlying assumptions. Section 4 will describe the numerical
implementation of this model. Section 5 will provide a description
of the experimental setup and the measurement method. The in-
terpretation of the results and the comparison between the simu-
lations and experiments will be made in Sec. 6. Finally, in Sec. 7,
conclusions will be presented.

2 Theoretical Background
The dynamics of disks are characterized by a number of vibra-

tion forms, also called disk modes, and their corresponding natu-
ral frequencies. As a disk is a continuum, infinitely many disk
modes exist, with distinct natural frequencies. Only modes with
low natural frequency �say, below 1000 Hz� are of practical im-
portance for this research. As a result, only transverse �out-of-
plane� disk modes are considered because in-plane modes have
high natural frequencies ��1500 Hz�. The transverse disk modes
are denoted by �m ,n�, where m is the number of nodal circles and
n is the number of nodal diameters. Some examples of disk modes
are given in Fig. 1. The �0,0� mode is also known as the umbrella
mode and the �0,2� mode is called a saddle mode.

For a rotating disk, two additional effects show up:

• First, rotation of the disk causes a build-up of radial stress in
the disk. Since this results in stretching of the midplane of
the disk, this is called the stretch effect. Midplane stretching
causes an increased disk stiffness. Therefore, the natural fre-
quency of each mode will increase with the rotation fre-
quency �.

• Second, the rotating disk is observed by a non-corotating
�Earth-fixed� observer �for instance, the lense of the OPU�.
As a result, each �m ,n� mode �n�0� splits into a forward
traveling and backward traveling wave �see �1,2��. This is
called mode splitting.

The stretch effect and mode splitting are depicted in Fig. 2, a
so-called Campbell plot, for an �m ,n� mode �n�0�. Here, the
stretch effect is seen for both the body-fixed and the Earth-fixed
observer. In the former case, the curve has a positive slope for
increasing rotation frequency �. In the latter case, mode splitting
results in a forward and backward traveling wave.

For a certain rotation frequency, the so-called critical speed, the
backward traveling wave reaches zero natural frequency. At the
critical speed, a constant �non-time-varying�, Earth-fixed excita-
tion can bring the disk into a critical speed resonance �resonance
with zero natural frequency�. The disk attains a stationary �nonro-
tating� deformed shape, which is dominated by the mode shape
that has its critical speed at this rotation frequency.

In an optical drive, the inner geometry forms an excitation
source. As the disk rotates, it generates airflow in the drive. Due to
airflow over the drive inner geometry, pressure differences are
generated in the drive. These pressure differences depend on the

Fig. 1 Some examples of disk modes
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airflow, but for a constant rotation frequency �, they will be Earth
fixed and more or less of constant nature. Namely, due to insta-
tionarities in the airflow and the disk vibrations, they will fluctuate
around some constant value. As a result, a more or less constant
pressure distribution acts on the disk. Since this excitation is both
Earth fixed and constant, it is a mechanism for exciting critical
speed resonances.

3 Analytical Model

3.1 Disk Model. Consider a circular annular disk, clamped at
a radius rc and free at its outer radius ro, and rotating with angular
velocity � �see Fig. 3�. The geometry of the disk is described by
radial and circumferential coordinates r and �, respectively. It
rotates at a distance s�r ,� , t� above a rigid, fixed baseplate, and a
transverse pressure distribution p�r ,� , t� is assumed to act on it.
The transverse deflection of the disk is w�r ,� , t�.

The assumptions underlying the analytical model for the disk
can be summarized as follows:

�1� the disk is made of an isotropic, homogeneous material;
�2� the material is linearly elastic, such that Hooke’s law holds;
�3� the density �, Young’s modulus E, and the Poisson ratio �

are constant throughout the disk and over time;
�4� the disk is flat and has constant thickness h; hence, it con-

tains no imbalance or warpage;

�5� the disk is thin �h�ro�, such that the Kirchoff plate theory
�see �24�� holds; this theory contains the following assump-
tions:

�a� Straight lines, perpendicular to the midsurface �trans-
verse normals� before deformation remain straight af-
ter deformation;

�b� Transverse normals do not experience elongation
�they are assumed to be inextensible�;

�c� Transverse normals rotate such that they remain per-
pendicular to the midsurface after deformation;

�6� in-plane displacement is assumed to be axisymmetric, sta-
tionary, and much smaller than the transverse displacement
w;

�7� the disk rotates with a constant angular velocity �; hence,

�̇=0;
�8� rotatory �in-plane� inertia is neglected;
�9� thermal effects are not taken into account.

With these assumptions, a linear model for the transverse de-
flection of the disk can be obtained �see for example
�5,6,9,10,21,22��. The equation for the transverse deflection w,
containing both membrane and bending stiffness, is given for an
Earth-fixed observer by:

�h� �2w

�t2 + 2�
�2w

�t � �
+ �2 �2w

��2� + D�4w −
�

r � r
�rqrr

�w

�r
�

−
�

r � �
�q��

�w

r � �
� = p �1�

where D is the bending rigidity of the disk and �4 is the bihar-
monic operator:

D =
Eh3

12�1 − �2�
�4 = � �2

�r2 +
�

r � r
+

�2

r2 � �2�2

�2�

and qrr and q�� are, respectively, the radial and tangential internal
forces per unit length due to the centrifugal action of rotation:

qrr = −
��2h

8
��3 + ��r2 − C1 +

C2

r2 �
�3�

q�� = −
��2h

8
��1 + 3��r2 − C1 −

C2

r2 �
with the constants C1 and C2 given by:

C1 = �1 + ��
�3 + ��ro

4 + �1 − ��rc
4

�1 + ��ro
2 + �1 − ��rc

2

�4�

C2 = �1 − ��rc
2ro

2 �1 + ��rc
2 − �3 + ��ro

2

�1 + ��ro
2 + �1 − ��rc

2

The disk is clamped at the clamping radius, requiring zero trans-
verse displacement and slope at rc, and free at the outer radius,
yielding zero edge reaction and zero bending moment at radius ro.
This results in the following four boundary conditions associated
with Eq. �1�:

w = 0
�w

�r
= 0 at r = rc

mrr = 0 − D
�

�r
��2w� +

�mr�

r � �
= 0 at r = ro �5�

where

Fig. 2 Campbell plot: natural frequencies in the body-fixed
and Earth-fixed frames as a function of the rotation frequency

Fig. 3 Schematic representation of a flexible disk rotating
above a rigid, fixed baseplate
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mrr = − D� �2w

�r2 + �� �w

r � r
+

�2w

r2 � �2��
�6�

mr� = − �1 − ��D� �2w

r � r � �
−

�w

r2 � �
�

3.2 Airflow Model. The excitation mechanism acting on the
disk is provided by the transverse pressure distribution p
= p�r ,� , t� on the right-hand side of Eq. �1�. This pressure distri-
bution is calculated from a model for the airflow over/through the
drive inner geometry. As the goal of this research is to obtain
general trends for geometry influence, the airflow model should
preferably be simple and intuitive. Consequently, the use of highly
detailed models, which can only be calculated by time-consuming
CFD methods, is not considered. Namely, the interest does not lie
in the detailed flow patterns and velocity field of the air in the
drive, but in the global excitation mechanism �pressure distribu-
tion� caused by the airflow.

An airflow model that satisfies these requirements is a lubrica-
tion approximation �the Reynolds equation� for the air films below
and above the disk �21,22�. The Reynolds equation is often used
in problems where there is no real lubrication, but where mainly
pressure calculations are important. Therefore, it provides a com-
mon first step as a model for the airflow to obtain an estimate of
the pressure distribution resulting from the geometry. Turbulence
and convective terms, describing fluid inertance effects, are ne-
glected in this approach. Inclusion of these terms would result in
vortices in the fluid and, due to fluid viscosity, in higher pressure
differences. Hence, without these terms, a lower estimate of the
pressure distribution will be obtained.

The airflow between the disk and the baseplate �see Fig. 3� is
modeled by the Reynolds equation for circular geometry, resulting
from simplification of the Navier-Stokes equations. The following
simplifications are used:

�1� the fluid is Newtonian;
�2� the flow is laminar and incompressible;
�3� the fluid has constant viscosity � and density �a;
�4� thermal effects are negligible;
�5� all fluid internal forces, except for the centrifugal force, are

negligible compared to the viscous forces;
�6� the fluid film thickness is small compared to the diameter of

the disk; pressure variations across the film �in thickness
direction� are neglected.

The Reynolds lubrication equation is derived by using the con-
tinuity equation, together with the simplified Navier-Stokes equa-
tions. A detailed explanation and derivation can be found in �23�
for a general case, and in �21� for a flexible disk rotating over a
rigid baseplate. For an Earth-fixed description, this results in the
following lubrication equation:

�

�r
� rs3

�

�p

�r
� +

�

r � �
� s3

�

�p

��
�

= 6r�
�s

��
+ 12r

�s

�t
+

3�a�2

10�

�

�r
�r2s3�

−
�a

10�3

�

�r
���s5 �p

��
−

3

28

s7

r2� �p

��
�2� �7�

where s=s�r ,� , t� is the film thickness depending on the geometry
of the baseplate and the disk shape �see Fig. 3�. Centrifugal effects
in the fluid are included in the last two groups of terms on the
right-hand side. The first group represents the effects induced by
shear, whereas the second group contains the effects caused by the
circumferential pressure gradient.

3.3 Combined Model. As will become clear in Sec. 5, the
disk rotates in a cylindrical cavity, which means that rigid base-

plates are located above as well as below the disk. Additionally,
walls are present in the radial direction. This is depicted in Fig. 4,
where su and sl denote the nominal gap heights above and below
the disk, respectively. pu�r ,� , t� and pl�r ,� , t� are the pressures
resulting from airflow over airflow disturbances in the upper and
lower cavities, respectively. For both cavities, Eq. �7� has to be
solved and their pressure difference acts as an excitation on the
disk �Eq. �1��. The presence of walls in the radial direction is
accounted for by specifying boundary conditions at points p1
through p4 in Fig. 4. At p1, zero ambient pressure is assumed,
whereas zero pressure gradient �p /�r=0 is assumed at p2. Fur-
thermore, airflow from the lower to the upper cavity is assumed
not to take place. Therefore, pressure p3 is assumed to equal p2.
Zero pressure gradient is once more assumed at p4.

4 Numerical Model
The model for the disk and the airflow in the cavities above and

below it consists of two distinct parts, i.e., Eqs. �1� and �7�, be-
tween which the interaction takes place. As a result, it forms a
multiphysics problem, similar to problems found in hard disk re-
search �see �20��, where interaction takes place between the spin-
ning disks, the read-write head, and airflow in the drive. Here, the
two parts of the problem are calculated separately, and coupled
afterwards, in an iterative way. In order to perform calculations
for a variety of inner housing geometry layouts, a mesh-like de-
scription of both the disk and the pressure field is preferred.
Therefore, the disk part of the analytical model �Eq. �1�� is ap-
proximated by FEM techniques and the Reynolds equation �Eq.
�7�� is numerically implemented using finite difference tech-
niques.

For the disk, the FEM package ANSYS �25� is used. Elastic,
four-node shell elements are used to mesh the disk. The node grid
contains 25 equidistant nodes in radial direction and 100 equidis-
tant nodes in circumferential direction. The nodes at the clamping
radius rc are fully constrained in order to approximate the clamp-
ing condition of the disk. In the FEM model, for each rotation
frequency, two subsequent analyses are performed. First, a static
analysis is performed, in which the disk is prestressed due to
midplane stretching as a result of the centrifugal load caused by
rotation. Next, a modal analysis �Block-Lanczos solution proce-
dure� of this prestressed state is performed, in which the natural
frequencies and the transverse mode shapes for a number of disk
modes are calculated. This corresponds to a modal solution of Eq.
�1� in body-fixed coordinates. In this way, body-fixed natural fre-
quencies are obtained �see Fig. 2�. After some initial calculations,
a quantity of 26 modes is considered to be sufficient to describe
the disk dynamics for this research. This corresponds with the
�0,0�– �0,8� mode and the �1,0�– �1,4� mode, covering a body-
fixed frequency range of up to 2500 Hz. In this way, a description
of the disk in terms of modal coordinates is obtained, which is
exported to the numerical programming package Matlab® �26�.
Additionally, modal damping is added to each mode separately,
such that transients will decay during time simulations. The di-
mensionless damping coefficients are set to 0.005 for each mode,
which will become clear from Sec. 6.1.

Fig. 4 Schematic situation for the combined model
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The lubrication equation �Eq. �7�� is implemented in Matlab®

using finite difference discretization. As this discretization scheme
is the same as used in �21,22�, it is not discussed in detail here.
However, problems are experienced with the discretization of the
mixed derivative term and the nonlinear term �terms in �¯� in Eq.
�7��. These terms cannot be discretized by means of finite differ-
ences in a stable way, as found from a von Neumann stability
analysis �see for example, �27��. Therefore, these terms are omit-
ted in further analysis �as is also the case in �23��. As a result, the
Reynolds equation without these terms is considered to be a first
step in the modeling of the airflow below and above the disk.

The total numerical model consists of a combination of the
implementations of the disk equations and the Reynolds equation.
These two implementations are coupled iteratively �which will be
explained below� and integrated in time to determine the dynamic
response. As the modal description of the disk is valid for a body-
fixed coordinate system, the disk in the model does not rotate
physically, but contains a prestressed state, corresponding to a
certain rotation frequency. Consequently, the pressure distribution
has to rotate over the disk in order to obtain the same dynamic
situation as for a rotating disk and an Earth-fixed load. Therefore,
the mesh for the pressure distribution has to rotate relative to the
disk mesh. To avoid computationally costly interpolation, time
steps in the algorithm are coupled to the mesh size and the rota-
tion frequency. This suggests fixed time steps and, therefore,
second-order implicit time integration �trapezoid method, see
�28�� is implemented.

The two-sided interaction between the disk model and the pres-
sure equation is implemented as follows. After a number of com-
plete revolutions of the pressure distribution over the nonrotating
disk, the film thicknesses of the fluid films above and below the
disk are calculated. Evaluation after each time increment would be
computationally too costly. After some simulations with the com-
plete model, it is found that the calculated disk deflection is too
small to influence the pressure distributions above and below the
disk significantly. As a result, the pressure distribution is calcu-
lated only at the beginning of each simulation �based on an unde-
formed disk� and no further coupling between the disk equations
and the pressure equations takes place.

Parameter values for the numerical model are found from �29�
for the polycarbonate disk, and from �30� for the airflow part
�ambient temperature 20°C� and equal: E=2.7�109 Pa, �=0.33,
�=1200 kg/m3, h=1.2 mm, rc=12.75 mm, ro=60 mm, �a
=1.23 kg/m3, and �=18.6�10−6 Pa s.

5 Experimental Approach

5.1 Experimental Setup. In order to be able to gain insight
into the general influence of inner housing geometry on critical
speed resonances, no real optical drive is used, since this forms a
very complicated system. Instead, an idealized drive is consid-
ered, which consists of an aluminum base, to which the drive
mechanism is rigidly mounted. The stator part of the motor is
mounted to the bottom plate of the housing and a disk is clamped,
by means of a magnetic clamper, to the turntable, fixed to the rotor
part of the motor. The disk is a polycarbonate CD, with a highly
reflective coating on both sides, which is beneficial for the mea-
surement method. Several of the described parts can be seen in
Fig. 5.

As a normal optical drive forms a more or less air-tight unit, the
idealized drive should also be more or less air tight. Therefore,
around the disk, a cylindrical cavity is present, built from alumi-
num cavity parts. The cavity is covered by a transparent polym-
ethyl methacrylate �PMMA� top plate, to enable measurement of
disk tilt �see Sec. 5.2�. The only hole in the setup is a hole in the
bottom plate, through which the turntable enters the cavity. A
schematic overview of the idealized drive is given in Fig. 6. This
situation is identical to the analytical situation in Fig. 4. The di-
mensions denoted in Fig. 6 are: rh=15 mm, rw=60.5 mm, su

=3.3 mm, and sl=5.5 mm. This means that the cavities above and
below the disk do not have the same height, which is also the case
in a real optical drive. As an excitation source for critical speed
resonances, simple wedge-like geometrical airflow disturbances
are placed on the baseplate below the disk. These disturbances
have a radial dimension ranging from rh to ro, a tangential dimen-
sion of 10 deg, and a height of 2 mm.

5.2 Measurement Method. In order to be able to measure
radial and tangential tilt of the disk �and, indirectly, its transverse
deflection�, a measurement method is designed, which yields a
global view of the disk deformation. The method is a projection
method, in which a pattern, reflected in a disk, is measured by
means of a camera �see Fig. 7�a��. As the disk deforms, a change
of the measured pattern can be observed due to a local change of
the angle of the reflective disk �see Fig. 7�b��. As a result, small
variations in the disk shape can result in large variations in the
pattern reflected on the disk. The pattern, consisting of white dots
on a black background, permits measurement analysis by means
of image processing software. Examples of a reference and “de-
formed” camera frame can be seen in Fig. 8. Actually, averaging
is performed over 100 high speed camera frames, captured at

Fig. 5 Picture with parts of the idealized drive

Fig. 6 Schematic overview of the idealized drive

Fig. 7 Schematic overview of the projection method
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1000 fps, in order to reduce the effect of disk imperfections and
reflection variations. The situation in Fig. 8�b� corresponds to a
saddle mode of the disk.

Using image processing routines written in Matlab®, local ra-
dial and tangential tilt values of the disk can be calculated from
the camera frames. Next, the disk shape that approximately
matched these tilt values is determined by least squares techniques
using the radial and tangential tilt of the mode shapes from the
FEM model of the disk �see Sec. 4�. Even with only 26 modes
included, residues of the fit are always lower than 10%, indicating
that a nice match is obtained. Some residues will always be
present, as the disk used in the experimental setup will contain
effects that cannot properly be described by a finite number of
mode shapes, like, for instance, warpage. The residue of 10%
translates to approximately ±1 mrad accuracy in the measured tilt
values.

6 Results
In order to gain insight into the influence of drive inner housing

geometry on the presence of critical speed resonances in optical
drives, first some initial results are discussed, mainly based on the
simulation model. Next, simulations and experiments are com-
pared.

6.1 Exploratory Simulations and Presentation of Results.
In order to determine at which rotation frequencies critical speed
resonances of the polycarbonate disk can occur, a Campbell plot is
constructed from the natural frequencies obtained from the FEM
calculations of the disk. For rotation frequencies below 200 Hz,
the natural frequencies of the forward and backward traveling
waves are depicted in Fig. 9.

The maximum rotation frequency in current optical drives

equals about 160 Hz. Therefore, three modes are of practical in-
terest, namely, the �0,2�, �0,3�, and �0,4� modes, which have
their critical speeds at 120.9, 133.1, and 163.4 Hz, respectively, as
can be seen in Fig. 9. Below a rotation frequency of 100 Hz, no
critical speeds are found. Therefore, the rotation frequency range
of interest is set to 100� f �170 Hz, with a resolution of 	f
=1 Hz.

From both the numerical model and the measurements, a
steady-state Earth-fixed disk shape w�r ,�� can be obtained for
each rotation frequency. In the simulation model, a time simula-
tion is performed for each rotation frequency until transients have
disappeared. In the measurements, the disk is spun to the desired
rotation frequency. After approximately 10 s, the steady state is
reached and a series camera frame is captured and averaged. By
comparing this frame to a reference frame �undeformed disk� the
disk shape can be reconstructed �see Sec. 5.2�.

The results of a measurement or simulation series consist of the
steady-state Earth-fixed disk shape w�r ,�� for the range of rota-
tion frequencies f considered. This will be denoted as w�r ,� , f�.
Each steady-state disk shape contains contributions of all the
mode shapes included in the model/fit. However, in the frequency
range considered, the �m ,n� modes with m�0 will hardly be ex-
cited by wedge-like airflow disturbances. Namely, the excitation
does not match mode shapes with nodal circles. As a result, the
maximum transverse deflection and the maximum radial and tan-
gential tilt of each steady-state disk shape w�r ,� , f� are present at
the outer rim of the disk. This means that the deflection at the
outer rim ro of the disk contains characteristic information of the
disk shape. Hence, three-dimensional information on the disk
shape can be reduced to a two-dimensional representation by con-
sidering the transverse deflection at the outer rim versus circum-
ferential position on the disk; this implicates a reduction from
w�ro ,� , f��w�� , f�. For the radial and tangential tilt, similar rep-
resentations are obtained, denoted by 
r�� , f� and 
t�� , f�,
respectively.

Next, a new way of representing the characteristics of a simu-
lation series is proposed, consisting of a plot with the steady-state
circumferential profile at the outer rim of the disk versus the ro-
tation frequency. This profile could be the transverse deflection
w�� , f�, radial tilt 
r�� , f�, or tangential tilt 
t�� , f�. Additionally,
the circumferential location of local maxima and minima of the
profile is indicated. The name avalanche plot is proposed as a
name for this new type of plot.

An example of a tangential tilt avalanche plot �
t�� , f�� is
shown in Fig. 10. The inner housing geometry for this simulation
is shown in Fig. 11�a�. The resulting pressure difference 	pdist
= pdist,l− pdist,u is shown in Fig. 11�b� for f =120 Hz, where pdist,l
and pdist,u denote the pressures in the lower and upper cavity,
respectively.

The airflow disturbance is located at �=0 deg in the lower

Fig. 8 Examples of the camera view

Fig. 9 Campbell plot „for an Earth-fixed observer…

Fig. 10 Example of an avalanche plot: �t„� , f… †mrad‡
„maxima: �; minima: Œ…

Journal of Applied Mechanics NOVEMBER 2007, Vol. 74 / 1257

Downloaded 04 May 2010 to 171.66.16.42. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



cavity and the disk rotates in a clockwise direction. Due to the
large values of the pressure, the effect of the airflow disturbance
cannot clearly be distinguished. Therefore, in Fig. 11�c�, the pres-
sure difference between a simulation with and without airflow
disturbance is depicted, in which it can be seen that the airflow
disturbance has a local influence on the pressure field.

Local maxima and minima of 
t�� , f� are indicated by black
triangles and white circles in Fig. 10, respectively. Furthermore,
the circumferential location of the airflow disturbance is indicated
by a black solid line. From the figure, it can be seen that near three
rotation frequencies, large tangential tilts occur. These frequencies
correspond to the critical speeds from Fig. 9 and equal approxi-
mately 121, 133, and 163 Hz. From the number of local maxima
and minima at these frequencies, it can be seen that they belong to
the �0,2�, �0,3�, and �0,4� modes, respectively. Note that new
local maxima/minima appear between two critical speeds �around
125 Hz and 150 Hz in Fig. 10�. They originate from a single
nucleus and split up in a new pair of local minima and maxima. In
this case, the nucleus is located at a circumferential position near
the airflow disturbance.

Near the critical speeds, a movement of the local maxima and

minima in circumferential direction can be observed. This means
that the steady-state disk shape rotates in the � direction relative
to the airflow disturbance, located at �=0 deg. To find an expla-
nation for this rotation, a small part of the avalanche plot can be
considered. Namely, consider rotation frequencies ranging from
155 Hz to 170 Hz, in which the critical speed of the �0,4� mode
�fc=163 Hz� is contained. Below the critical speed, a local tan-
gential tilt maximum is located approximately at the position of
the airflow disturbance. Above the critical speed, a minimum is
located at this position. This is the same effect as the 180 deg
phase change of a single mass-spring mechanical system around
its natural frequency. In order to understand this, Fig. 12 is
considered.

The pressure difference, resulting from airflow over inner hous-
ing geometry, can be considered to act on the disk as a moment
M. To see this, consider Fig. 11�c� where, in the clockwise direc-
tion, the excitation on the disk contains a maximum, followed by
a minimum. For f � fc, deformation and moment are in phase in a
static way �stiffness determined, as for an ordinary single mass-
spring mechanical system�, as is depicted in Fig. 12. The out-of-
phase situation �f � fc� contains a disk slope of opposite sign;
hence, the phase change in disk tilt equals 180 deg �see Fig. 12�.
At the critical speed f = fc, the transverse displacement is largest
and the tangential tilt at the location of the disturbance is near
zero. For the critical speed resonance considered here �the �0,4�
mode�, a change of sign of the disk slope corresponds with a
rotation of the disk shape of 45 deg in the circumferential direc-
tion. This equals the circumferential movement of the local
maxima and minima between 155 Hz and 170 Hz in Fig. 10.

Around the critical speeds of the �0,2� and �0,3� modes, simi-
lar rotations of the disk shape take place, with circumferential
movements of 90 deg and 60 deg, respectively. However, since
these critical speeds are located close to each other, some inter-
ference effects take place, making it difficult to see the rotations
properly in the � direction.

The size of the rotation frequency intervals over which the
movement of the local maxima and minima takes place in the
simulation model depends on the modal damping values in the
numerical model. The damping values are adjusted such that the
rotation frequency intervals in the simulations have similar length
as the ones in the experiments. In this way, a dimensionless damp-
ing coefficient of 0.005, or 0.5%, is estimated for all modes. These
damping values are used for all simulations in the remainder of
this paper.

The information in the avalanche plot of Fig. 10 can be reduced
one step further by calculating the maximum absolute radial or

Fig. 11 Airflow disturbance configuration „a… and pressure dif-
ference „b… at a rotation frequency of f=120 Hz. The pressure
difference between the situation with and without disturbance
is depicted in „c….

Fig. 12 Circumferential movement of the disk shape around
the critical speed fc
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tangential tilt on the outer rim as a function of the rotation fre-
quency, corresponding with a reduction from 
r�� , f��
r,max�f�
or 
t�� , f��
t,max�f�. Figure 13 gives an example for the tangen-
tial tilt. This type of plot will be called a maximum absolute tilt
plot and is especially useful for comparing the effect of different
inner housing geometries �see also Sec. 6.2�. Additionally, in Fig.
13, the contribution of three individual modes is indicated, where
it can be seen that, at the critical speeds, the response is dominated
by the mode that is in critical speed resonance.

6.2 Simulations versus Experiments. In order to compare
the simulation model with the experiments, a series of inner hous-
ing geometries with different airflow disturbance configurations is
defined, which will result in illustrative responses with respect to
some critical speed resonances. In a real drive housing, one air-
flow disturbance is always present: the OPU, which is always
located close to the disk. Therefore, critical speed resonances will
always be excited to a certain extent. This situation is approxi-
mated by using a single wedge-like airflow disturbance positioned
at a 0 deg circumferential position. In this way, a reference situa-
tion is obtained, showing a certain response with respect to critical
speed resonances. This situation will be discussed in detail in Sec.
6.2.1. In order to gain more insight into the effect of inner housing
geometry on the presence of critical speed resonances, a second
airflow disturbance will be placed next to the reference distur-
bance. This will be discussed in Sec. 6.2.2.

6.2.1 Single Airflow Disturbance. Simulation and experimen-
tal avalanche plots of the tangential tilt 
t�� , f� of the reference
situation are depicted in Fig. 14. For the sake of convenience, the
simulation avalanche plot from Fig. 10 is repeated here in Fig.
14�a�. From Figs. 14�a� and 14�b�, it can clearly be seen that three
frequency regions are present in which critical speed resonances
show up, corresponding with the critical speeds of the �0,2�,
�0,3�, and �0,4� mode, respectively. Note that the circumferential
movements of the local maxima and minima in the experiment
near the critical speeds of the �0,3� and the �0,4� mode are not
very smooth �at f =132 Hz and 160 Hz�, which may be caused by
temperature effects in the disk. After all, due to the presence of the
critical speed resonance, the disk deforms relatively a lot, result-
ing in high energy dissipation. As a result, the disk is believed to
warm up, causing the related natural frequencies and critical
speeds to decrease. In measurements, this is observed as a tran-
sient critical speed resonance. For instance, only during the first
few seconds of a measurement, the critical speed resonance is
present after which it disappears. As only the steady-state defor-
mation is measured, this results in nonsmooth transitions in Fig.

14�b�. For the �0,2� resonance, the transverse disk deflection is
believed not to be large enough for the disk to dissipate enough
energy to warm up significantly. In order to verify this hypothesis,
experiments at higher temperatures should be conducted.

The critical speeds for both the simulations fc,sim and the ex-
periments fc,exp are summarized in Table 1, together with their
relative difference ��fc,exp− fc,sim� / fc,sim��100%. From Table 1 it
can be seen that there is a mismatch between the critical speeds in
the simulation and the experiment. Only a small mismatch is
present between the critical speeds of the �0,3� and �0,4� mode. A
larger discrepancy is present for the �0,2� mode. This may be
caused by a mismatch between the experimental clamping condi-
tion of the disk and the assumed boundary condition at the inner
radius �zero displacement� in the finite element model. The clamp-
ing condition has influence on the natural frequencies of all
modes, but for �0,n� modes with n�3, the effect is very small
�see, for example, �31� for analytical solutions�.

Furthermore, the magnitude of the tilt in the simulations is
much too small �compare the scaling of the experimental and
simulation avalanche plots�. The experimental tilt is two orders of

Fig. 13 Maximum absolute tangential tilt �t,max„f… versus rota-
tion frequency. Individual contributions of the „0,2…, „0,3…, and
„0,4… mode are also indicated

Fig. 14 Simulation and experimental avalanche plot for the
tangential tilt �t„� , f… of the reference configuration

Table 1 Critical speeds for the experiments, simulations, and
relative difference

Mode Experiment �Hz� Simulation �Hz� Relative difference �%�

�0,2� 113 121 −6.6
�0,3� 132 133 −0.8
�0,4� 160 163 −1.8
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magnitude larger than the tilt in the simulations. However, a quali-
tative match is found between the experimental and simulation
results. The circumferential locations of the local maxima and
minima of the radial and tangential tilt match approximately. This
means that the explanation for the rotation in � direction of the
disk shape around the critical speed �see Sec. 6.1� is correct and
that the pressure distribution calculated in the model corresponds
with the excitation in the experimental setup in a qualitative sense.

To address the effect of other inner housing geometries �Sec.
6.2.2�, it is more straightforward to consider maximum absolute
tilt plots for tangential tilt �
t,max�f��. These are depicted in Fig.
15 for both the simulation and the experiment with one airflow
disturbance. From this figure, another difference between the
simulations and measurements can be seen. Namely, in the experi-
ments the �0,3� and �0,4� modes are much more dominant rela-
tive to the �0,2� mode than in the simulation. This possibly means
that a larger mismatch is present for higher rotation frequencies,
which could indicate a frequency-dependent mismatch. Possible
causes are nonlinear and turbulent effects of the airflow in the
drive, which are not included in the current simulation model.
Furthermore, mixture between the air in the upper and lower cav-
ity has not been taken into account yet. This is worthwhile inves-
tigating in future research, together with the effect of different
airflow disturbance heights.

6.2.2 Two Airflow Disturbances. In an attempt to gain more
insight into the airflow-housing-induced excitation of critical
speed resonances, the influence of a second airflow disturbance,

placed in the lower cavity, is investigated. As an additional result,
reduction of critical speed resonances is found to be possible.
Several different inner housing geometries are considered, in
which the tangential distance between the two airflow distur-
bances is varied from 30 deg to 90 deg. The effect of the added
airflow disturbance is judged by comparing maximum absolute tilt
plots. Avalanche plots are used to assess the match between the
simulation model and the experiments. Since maximum absolute
tilt plots and avalanche plots have similar characteristics for radial
and tangential tilt, only the plots for tangential tilt are depicted.

One configuration will be discussed in detail now, to clarify
how the aforementioned comparison is carried out. In this con-
figuration, two airflow disturbances of 2 mm height and 10 deg
angular width are present below the disk. The angle between the
two disturbances equals 90 deg. Tangential tilt avalanche plots for
the simulation and the experiment are depicted in Figs. 16�a� and
16�b�, respectively. Comparison of these two figures shows a
qualitative match. Namely, in both the experiment and the simu-
lation, the critical speed resonance of the �0,2� mode is sup-
pressed. Instead, from 100–130 Hz, the disk has a �0,3� shape,
since three local maxima/minima are found in this range. No new
maxima/minima appear around 125 Hz, which normally would be
the case �see Fig. 14�. At f 	145 Hz, a new local maximum/
minimum couple appears at 45 deg, in between the two airflow
disturbances.

The suppression of the critical speed resonance of the �0,2�
mode is also clearly observed in Fig. 17, where the maximum
absolute tangential tilt is plotted versus the rotation frequency for
both the experiments and the simulations. This suppression is

Fig. 15 Maximum absolute tangential tilt versus rotation fre-
quency for the reference configuration

Fig. 16 Simulation and experimental avalanche plots for the
configuration with two airflow disturbances, 90 deg apart

1260 / Vol. 74, NOVEMBER 2007 Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.42. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



caused by the pressure distribution resulting from the geometry.
From Sec. 6.1, it has become clear that the pressure resulting from
a single disturbance causes a specific orientation of a mode in
critical speed resonance in circumferential direction. However, in
the case of two disturbances that are 90 deg apart, their individual
orientation demands are in antiphase for the �0,2� mode. For in-
stance, both individual disturbances would cause a similar tangen-
tial disk slope at their location, but this is not possible for the
�0,2� mode, since the shape of the �0,2� mode repeats itself every
180 deg in circumferential direction. This means that similar �say,
positive� tangential slopes are 180 deg apart, whereas the distur-
bances request 90 deg spacing between positive tangential slopes.
As a result, this disturbance configuration hardly excites the �0,2�
mode. However, this would be the ideal excitation configuration
for the �0,4� mode.

In the maximum absolute tilt plot of the simulation �Fig. 17�a��,
it can be seen that the tilt at the critical speeds of the �0,3� and
�0,4� modes increases for the configuration with two disturbances
90 deg apart, compared to the single airflow disturbance configu-
ration. The �0,4� mode shows the largest relative increase, due to
the fact that the excitation from the two airflow disturbances
matches the disk shape of this mode better. In the experiment �Fig.
17�b��, this effect is not seen. An explanation for this has not been
found yet.

In analogy to the suppression of the �0,2� mode, the �0,3� and
�0,4� modes can also be suppressed by a certain airflow distur-

bance configuration. Two airflow disturbances with 60 deg spac-
ing in between hardly excite the �0,3� mode, whereas the �0,4�
mode is suppressed by two disturbances located 45 deg apart.
This is shown in Fig. 18 for both the simulations and the
experiments.

For the situation with two disturbances located 60 deg apart,
the �0,3� mode is not suppressed completely in both the simula-
tion and the experiment, which could indicate that the airflow
disturbances influence each other’s pressure distribution.

The most ineffective excitation for the �0,4� mode contains two
disturbances 45 deg apart. However, for both the experiment and
the simulation, again, the resonance of this mode is not com-
pletely suppressed, which once more indicates that the two airflow
disturbances influence each other. Furthermore, in the experiment,
the presence of the resonance of the �0,3� mode is also reduced
considerably.

From the comparison of the experiments with the simulations, it
becomes clear that the model only matches with the experiments
in a qualitative sense. In order to obtain a quantitative match, the
effect of turbulence and nonlinear effects in the airflow should
also be taken into account. Additionally, direct coupling between
the two parts in the numerical model might be necessary once the
disk transverse deflection is no longer too small to influence the
pressure distributions above and below the disk, as is the case in
the current implementation. For the geometry configuration with a

Fig. 17 Maximum absolute tangential tilt versus rotation fre-
quency „solid line: reference; dashed line: two disturbances,
90 deg apart

Fig. 18 Maximum absolute tangential tilt versus rotation fre-
quency „solid line: reference; dashed line: two disturbances,
60 deg apart; dashed-dotted line: two disturbances, 45 deg
apart
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single airflow disturbance, a good qualitative match is obtained.
When two disturbances are used, trends in the experiments are
also found from the simulation model. However, when the dis-
tance between the disturbances becomes smaller, the qualitative
match is less apparent. This is most probably due to the numerical
model for the airflow that does not match the reality accurately
enough. Again, turbulence and nonlinear effects should probably
no longer be neglected for these cases. Furthermore, mixture be-
tween the air above and below the disk takes place in the experi-
mental setup, which is also not taken into account in the current
model.

Inner housing geometries considered in this research only ad-
dress the effect of airflow disturbances located in the same �bot-
tom� cavity. Alternatively, it would be worthwhile to investigate
the effect on critical speed resonances of two airflow disturbances
placed opposite to each other, one in the upper and one in the
lower cavity. Due to limitations in the measurement method, how-
ever, this has not been investigated yet.

7 Conclusions and Recommendations
In order to gain insight into the influence of drive inner housing

geometry on critical speed disk resonances in an optical drive, a
mixed numerical-experimental approach has been used. First,
theory on disk dynamics, transverse disk modes, and critical
speeds is explained and conditions for the occurrence of critical
speed disk resonances are stated.

Next, for the numerical analysis, a model has been derived,
consisting of two parts: one part describing the disk dynamics and
the other part describing the excitation mechanism due to airflow
in a drive-like environment. Effects such as, for instance, acous-
tics, thermal effects, shocks, and suspension flexibility are not
taken into account in the numerical model. The disk dynamics are
described by a truncated number of mode shapes of a radially
prestressed �due to rotation speed� finite element disk model. In
order to obtain the airflow induced pressure distribution that
serves as the transverse excitation in the disk model, the Reynolds
lubrication equation has been implemented using finite difference
techniques.

From an experimental point of view, a drive-like environment
has been created, which resembles the situation in the numerical
model. Wedge-like airflow disturbances are used in the drive’s
housing. In order to measure disk tilt �both radial and tangential�,
a measurement method has been designed. This is an indirect
method, in which a pattern, reflected in a mirror coated disk, is
measured. In this way, a global view of the disk deformation is
obtained. By making use of image processing software developed
in the programming package Matlab®, and a least-squares fit using
the mode shapes from the modal analysis, the transverse disk
deflection can be reconstructed from the measurements.

Results from both the numerical and the experimental analyses
can be presented by means of two newly proposed types of plots:
an avalanche plot and a maximum absolute tilt plot. These plots
enable comparison of the simulation results with the experimental
results in a straightforward way. Additionally, they enable com-
parison of the influence of different airflow disturbance configu-
rations on the occurrence of critical speed resonances.

From the results of the numerical-experimental approach, it has
been found that the numerical simulations match the experimental
results in a qualitative sense. Similar orientations of disk shapes in
� direction are found at critical speed disk resonances. The cir-
cumferential locations of points with local maximum and mini-
mum tilt values also correspond. However, tilt amplitudes in the
numerical model are two orders of magnitude smaller than tilt
amplitudes in the experiments. Additionally, a slight mismatch for
the critical speeds is found, probably caused by inaccurate mod-
eling of the boundary conditions at the clamping radius of the
disk.

In drives that are currently developed, critical speeds of the
�0,2�, �0,3�, and �0,4� modes can be present in the velocity pro-

file. Critical speed resonances of these modes are always excited
to a certain extent in practice �due to the OPU�. A reference inner
housing geometry, containing a single airflow disturbance at a
circumferential position of 0 deg, provides insight into the excita-
tion mechanism of critical speed resonances. As an additional re-
sult of the simulations and experiments for inner housing geom-
etries containing two airflow disturbances, reduction of critical
speed resonances of the �0,2�, �0,3�, and �0,4� modes has been
found to be possible. This is achieved by placing additional air-
flow disturbances at angles of 90, 60, and 45 deg circumferential
spacing, relative to the reference disturbance at �=0 deg, respec-
tively.

The main contributions of the research presented in this paper
can be summarized as follows:

• A suitable and very powerful measurement method for disk
tilt has been designed. A global view of the tilt is obtained,
and by use of the modal analysis from the numerical model,
the disk shape can be reconstructed;

• A numerical model has been developed whose results match
with the experimental results in a qualitative sense;

• A systematic approach has provided insight into the effect of
inner housing geometry on the presence of critical speed
resonances;

• Both the experimental measurement method and the numeri-
cal model can be used as a design tool for the development
of future generations of drives.

Recommendations for further work are the following. The airflow
model should be improved by including the effect of the nonlinear
terms in the lubrication equation or even by inclusion of turbu-
lence effects. Additionally, an improved airflow model should al-
low mixture between air above and below the disk. Furthermore,
direct coupling between the disk and the airflow model should be
implemented once the disk deflection is found to influence the
pressure distribution significantly.
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Semi-Analytic Hybrid Method to
Predict Springback in the 2D
Draw Bend Test
A simplified numerical procedure to predict springback in a 2D draw bend test was
developed based on the hybrid method which superposes bending effects onto membrane
solutions. In particular, the procedure was applied for springback analysis of a specially
designed draw bend test with directly controllable restraining forces. As a semi-analytical
method, the new approach was especially useful to analyze the effects of various process
and material parameters on springback. The model can accommodate general aniso-
tropic yield functions along with nonlinear isotropic-kinematic hardening under the plane
strain condition. For sensitivity analysis, process effects such as the amount of bending
curvature, normalized back force and friction, as well as material property effects such as
hardening behavior including the Bauschinger effect and yield surface shapes were stud-
ied. Also, for validation purposes, the new procedure was applied for the springback
analysis of the dual-phase high strength steel and results were compared with
experiments. �DOI: 10.1115/1.2745390�

Keywords: springback, sheet metal forming, draw-bend test, plane strain analysis, an-
isotropic yield surface, nonlinear kinematic hardening, Bauschinger effect, dual-phase
high strength steel

1 Introduction
Springback, as mainly the elastically driven shape change of

formed parts, is one of drawback, which needs to be minimized or
compensated for with proper prediction in the design stage of
forming processes for quality end products. Springback is how-
ever affected by the complex combination of bending, unbending,
and stretching imposed on parts during forming processes. There-
fore, the proper understanding of the effects of process parameters
as well as material properties on springback is so useful to effec-
tively design forming processes. There are three approaches in
analyzing springback: the analytical method, the semianalytical
method without involving major finite element analysis, and the
finite element analysis. The classical analytical approach assumes
simple tool description and material properties. Examples of this
approach include the springback analysis of pure bending with
elasto-perfect plasticity �1�, plane strain pure bending �2�, plane
strain bending �3,4�, plane stress bending �5� with additional ten-
sile force, and biaxial elastic-plastic pure bending of a rectangular
plate �6,7�. The analysis of process effects was mainly performed
for 2D draw forming, which involves the die corner and sidewall
curl regions �8,9�. More recently, Jeunechamps et al. developed a
closed form method to predict springback in creep age-forming
and investigated the effects of geometric parameters on spring-
back of aluminum plates �10�. Since the analytical method in-
volves simplifications of process conditions and material proper-
ties, the method is not so effective in the accurate analysis of
springback for real forming. However, it provides a useful basis
for the qualitative understanding of process and property effects
on springback.

With the rapid development of computational power and solu-

tion techniques, the finite element method �FEM� has been widely
utilized to predict and understand the springback. Examples of the
FEM springback analysis of 2D formed parts include the cantile-
ver beam analysis by Kawaguchi et al. �11�, the 2D draw bending
benchmark problem by Mattiasson et al. �12� and He and Wagoner
�13�. The advantages of the FEM method over analytical and
semianalytical methods are its capabilities to model complicated
tool descriptions and realistic constitutive behavior. Li et al. �14�
investigated the springback of draw bend tests including paramet-
ric studies on numerical and physical parameters such as the size
of meshes, the number of integration points, tool radius, and re-
straining forces. Geng and Wagoner �15� analyzed springback
angles and the role of anticlastic curvature especially with large
�restraining� back forces using a series of simulated draw bending
tests in conjunction with an anisotropic hardening rule and four
different yield functions. Chung et al. �16� and Lee et al. �17,18�
evaluated the springback of a modified automotive part by imple-
menting the modified combined isotropic-kinematic hardening
and nonquadratic anisotropic yield function. In terms of the finite
element technique, in order to improve the accuracy of the elastic-
plastic stress distribution in springback prediction, higher order
finite elements with enhanced assumed strain method have been
developed to remove volumetric and shear lockings �19,20�.

Although FEM is useful and considered as one of the most
accurate numerical tools for the analysis of springback, the high
computational cost and highly sensitive nature of predicted results
to numerical parameters are difficulties that have yet to be over-
come. Computational cost to prepare meshes and connectivity for
sheets and tools during preprocessing and to generate proper re-
sults during postprocessing are much larger than those of analytic
or semianalytical methods. Regarding the high sensitivity of nu-
merical parameters on springback, the effects of element types
and the integration scheme were reported �21,22�. The sensitivity
of springback was also ascertained by widely scattered simulation
results from various FE codes submitted to the Numisheet bench-
mark problem �23�. Even the same FE code fails to give consistent
results when different numerical parameters were utilized for the
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same problem. In an effort to reduce computational cost without
sacrificing that much of the accuracy in solutions, the hybrid
membrane/shell method was developed for the springback analy-
sis of 2D draw bending �24,25� and 3D parts �26�.

In the present paper, a semianalytical analysis method was de-
veloped based on the hybrid method �25�, particularly for the
springback analysis of a specially designed 2D draw bend test
with direct controllable restraining back forces �27,28�. For this
purpose, a simplified plane strain formulation based on elastic-
plasticity with nonlinear isotropic-kinematic hardening and the
nonquadratic anisotropic yield function was derived. To represent
the anisotropy of rolled sheets, the yield function Yld2000-2d �29�
was utilized. As for the hardening law, the nonlinear kinematic
hardening law based on the Chaboche model �30,31�, which has
been successfully applied to FE analysis to predict springback
�15,16,32–35�, was adopted.

Utilizing the semianalytical method developed here, sensitivity
tests were performed to understand process and material property
effects on springback in the particular 2D draw bend test. As for
the process effect, simulations were carried out for various bend-
ing curvatures, restraining back forces, and friction coefficients.
As for the material property effect, various values of material
parameters were tried out for isotropic-kinematic hardening and
the yield function. Finally, the predicted shapes and magnitudes of
springback were verified against experimental measurements for
the dual-phase high strength steel.

2 Draw Bend Test
The draw bend test considered in the work is schematically

shown in Fig. 1�a�. The draw bend test has the following advan-
tages over the typical U-channel bend test being widely used for
the study of forming and springback: �1� direct control of applied
force so that springback can be assessed for explicitly known
restraining �back� forces, �2� a single tool without bend at the
bottom of the channel which would have made the analysis com-
plicated, and �3� longer draw distance attainable. Therefore, with a
simpler setup and directly controllable tensile forces, springback
can be systematically measured and analyzed under a range
of controlled laboratory conditions but applicable to industrial
practice.

Detailed procedures of the draw bend test are well documented
elsewhere �27,28� and the test is briefly reviewed here. As shown
in Fig. 1�a�, the upper grip provides a constant restraining back
force, while the lower grip is displaced at a constant speed, thus
drawing the sheet strip over the cylindrical tool with a radius
chosen. The sheet sample undergoes tensile loading, bending over
the cylindrical tool and unbending at the exit of the cylindrical
tool. After the strip travels a prescribed distance, the grips are
instantly removed and the sheet is allowed to springback. Figure
1�b� shows a typical schematic view of the blank sheet before and
after springback. In order to measure the magnitude of springback
after the removal of tools, two main regions are considered. The
springback in region II in Fig. 1�b� represents the change of cur-
vature from the curvature of the cylindrical tool to that of the
relaxed sheet. The angle change ��1 is

��1 = �1 −
�

2
=

�

2
� r

r�
− 1� �1�

where r and r� are radii of the curvature of region II before and
after springback, respectively. On the other hand, the springback
in region III represents the change of curvature from zero to a
finite value. By assuming constant curvature of region III,

��2 = �2 =
127 mm

r�
�2�

where r� is the radius of curvature of region III after springback.
Therefore, in general, the angle change in region II is negative,
while it is positive in region III. It is difficult to measure the

springback angle with great accuracy especially in region II be-
cause the magnitude of angle change is quite small compared to
that of the other region and variation is small with respect to the
change of conditions. Therefore, following the suggestion made
previously �14,27�, the sum of the two angle changes, ��=��1
+��2, is adopted as the measurement of springback.

The three main control parameters which influence the magni-
tude of springback are restraining force, cylindrical tool size, and
friction. For the restraining force, the back force normalized by
the tension required to yield the sheet in the absence of bending is
used. Since the ratio of the cylindrical tool radius �r� over the
thickness of the sheet �t� is known as an important parameter �r / t
ratio� from the previous analytical study, the test can be performed

Fig. 1 „a… Geometry of the draw bend test with „b… deformed
shape before and after springback
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with various sizes of cylindrical tools. The friction coefficient is
hard to measure accurately in spite of introducing well character-
ized lubricants. Therefore, various Coulomb friction coefficients
are utilized to analyze the sensitivity of springback to the condi-
tion of friction between the tool and the blank sheet.

3 Hybrid Method
In the hybrid scheme, the solutions of bending and unbending

are superposed onto membrane solutions. The draw bend test
adopted in this paper has simple tool geometries in addition to the
direct application of restraining back forces so that solutions can
be derived in a straight manner without the aid of finite element
calculation unlikely as done in the previous works �24,25�. As for
the constitutive behavior of materials, the combined isotropic-
kinematic hardening based on nonlinear kinematic hardening is
applied �16�. Therefore, the numerical scheme is inevitably
needed to calculate solutions, which satisfy the equilibrium con-
dition at all material points. Details of the way the hybrid method
was applied for the semi-analytic analysis are illustrated here.

3.1 Constitutive Equations for a Thin Shell under the
Plane Strain Condition. Under the plane strain assumption for a
thin shell, strain components have the following relationship:

d�2
e = − d�2

p ��0� �3�

where superscripts e and p represent elastic and plastic compo-
nents, respectively. The subscript 2 shows the component of strain
along which the strain is constrained �the width direction of a thin
shell�. When the plane stress condition is further imposed for a
thin sheet, the stress state is generally not proportional under the
elasto-plastic formulation as schematically shown in Fig. 2�a�
�18�. As a way to achieve proportionality in loading for the simple
analysis here, the loading in Fig. 2�a� was approximated to that in
Fig. 2�b�; within the yield surface, the stress is proportional under
the condition, d�2=d�2

e =0, and as soon as the stress reaches the
yield surface, the stress is proportional under the condition, d�2

p

=0.
By the linear elasticity,

d�ps = Eps�d�ps − d�ps
p � �4�

where Eps=E /1−�2. Here, the ps means the components of the
plane strain deformation, while E and � are Young’s modulus and
Poisson ratio of elasticity, respectively. By applying the modified
plastic work equivalence principle for the isotropic-kinematic
hardening law �16�,

�̄isod�̄ = ��ps − �ps� · �d�ps
p � �5�

where the upper bar is used for equivalent �or effective� values
and subscript iso means isotropic hardening �therefore, �̄iso repre-
sents the current size of the expanding yield surfaće�, while � is
the back stress which represents the translation of the initial yield
surface. When the yield function is specified, the ratio � between
��ps−�ps� and �̄iso is determined under the plane strain condition
�d�2

p=0�. Therefore, Eq. �5� leads to

��ps − �ps� = ��̄iso

�d�ps
p � =

1

�
d�̄ �6�

Note that the ratio � depends on the shape of yield surface and it
is 2 /�3 for the von Mises yield function.

The evolution of the back stress under the plane strain condition
for the combined isotropic-kinematic hardening law based on the
modified Armstrong-Frederick model �36� becomes

d�ps = C1�d�ps
p �

�2��ps − �ps�
��ps − �ps�

− C2�ps��d�ps
p � �7�

where C1 and C2 are material parameters measured at the refer-

ence state, which is the uniaxial tension state in this work.
The hardening parameters �̄iso��̄� for isotropic hardening and

C1 and C2 for kinematic hardening are provided by performing
tension/compression uniaxial tests �compression tests with the
various amounts of tensile prestrains�. A specially designed device
to prevent buckling when the specimen is compressed has been
utilized, which is well documented in the previous literature �37�.
From the measured data, initially the isotropic hardening data is
separated from the total hardening data. Then, the two kinematic
hardening parameters which are assumed constants in this work
are obtained by the fitting the equation �̄= �C1 /C2��1−e−c2�̄�2 for
the rest portion of the hardening. The detailed characterization
method for the yield stress surface and hardening data is referred
to the previous work �17�.

When the strain increment d�ps is prescribed, the updated
stresses satisfy the following consistency condition: the newly up-
dated stress and back stress in the stress field satisfied the yield
stress size evolution condition specified by the isotropic hardening
data. Therefore, the consistency condition for the plane strain con-
dition becomes

2This is the solution of the ordinary differential equation, d�̄=C1−C2�̄, which is
the relationship at the reference state �or the uniaxial tension test condition�.

Fig. 2 „a… Stress state of a thin sheet in the plane-stress stress
field under the plane strain deformation in elasto-plasticity and
„b… rapid development of the proportional stress state during
the initial plastic deformation
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�̄iso − �̄iso��	 �d�ps
p �� =

��ps − �ps�
�

− �̄iso��	 �d�ps
p �� = 0

�8�

where ��ps−�ps� /� is the value obtained from the stress field and
�̄iso��
 �d�ps

p �� is the value obtained from the experimentally mea-
sured isotropic hardening data.

When discretized for the numerical formulation with the dis-
crete time increment �t, Eq. �8� becomes the following nonlinear
equation for the discrete equivalent strain increment ��̄, consid-
ering the discretized forms of Eqs. �4�, �6�, and �7�,

Gn+1 = �̄iso − �̄iso���̄� =
��ps,n+1 − �ps,n+1�

�
− �̄iso���̄� = 0 �9�

where

�ps,n+1 = �ps,n+1
T − ��̄ · Eps ·

1

�
·

�ps,n+1 − �ps,n+1

��ps,n+1 − �ps,n+1�
�10�

�ps,n+1 = �ps,n + C1��̄ ·
���ps,n+1 − �ps,n+1�
��ps,n+1 − �ps,n+1�

− C2�ps,n+1��̄

�11�

Note that Eq. �11� is equivalent to Eq. �7�, but here the discrete
equivalent plastic strain increment ��̄ is used. In Eq. �10�, �ps,n+1

T

is a trial stress at the time step n+1, which is initially assumed to
be elastic for a prescribed discrete strain increment ��ps; i.e.,

�ps,n+1
T = �ps,n + Eps · ��ps �12�

If the stress is outside the yield criterion, the current step is con-
sidered as elastoplastic and solution for Eq. �9� is performed based
on the Newton-Rhapson scheme. When the predictor-corrector
scheme is applied to solve Eq. �9� in which �ps,n+1 and �ps,n+1 on
the right-hand side of Eqs. �10� and �11� are considered known as
they are corrected during iteration, the linearized form of Eq. �9�
is, for the kth iteration,

G�k� + � �G

���̄
��k�

· 	���̄��k+1� = 0 or 	���̄��k+1� = −
G�k�

� �G

���̄
��k�

�13�

where

�G

���̄
=

�G

���ps,n+1 − �ps,n+1�� ��ps,n+1

���̄
−

��ps,n+1

���̄
� +

�G

��̄iso

��̄iso

���̄

�14�

�G

���ps,n+1 − �ps,n+1�
=

1

�
·

�ps,n+1 − �ps,n+1

��ps,n+1 − �ps,n+1�
�15�

��ps,n+1

���̄
= − Eps ·

1

�
·

�ps,n+1 − �ps,n+1

��ps,n+1 − �ps,n+1�
�16�

��ps,n+1

���̄
= C1 ·

���ps,n+1 − �ps,n+1�
��ps,n+1 − �ps,n+1�

− C2�ps,n+1 �17�

�G

��̄iso

= − 1 �18�

The detailed numerical procedure for the general plane stress case
is documented elsewhere �16�.

3.2 Resultant Force and Bending Moment. The through-
thickness tangential strain distribution during bending, unbending
with/without tension is calculated by sectioning the thickness into
N �even number� initially equal-sized layers for each element hav-

ing an initial area A0. In Fig. 3, the current thickness �therefore,
also the radius of curvature� of each layer is calculated by apply-
ing the following recursive equations from the middle layer under
the incompressibility assumption,

A0

N
=

1

2

S

R
�Rl−1

2 − Rl
2� =

1

2

S

R
��Rl + �zl−1�2 − Rl

2� �19�

for layers above the center lines and

A0

N
=

1

2

S

R
�Rl

2 − Rl+1
2 � =

1

2

S

R
�Rl

2 − �Rl − �zl�2� �20�

for layers below the center line. Solutions of the above equations
lead to

�z�−1 =�R�
2 + 2

R

S

A0

N
− R� �for layers above the central line�

�21�

�z� = R� −�R�
2 − 2

R

S

A0

N
�for layers below the central line�

�22�

where R �=1/
, 
 is curvature� and S are the current radius of
curvature and length of the centerline. Note that R is the radius of
curvature at the current center line which is iteratively obtained
from the tool radius r and length of center line S. Equations �21�
and �22� correspond to the positive bending in which the outer
fiber in Fig. 3 is stretched, while the inner fiber is compressed. For
the negative bending Eq. �22� holds for �z�−1 above the central
line and Eq. �21� holds for �z� below the central line.

The discrete tangential strain increment of each layer is calcu-
lated by considering the current length

��ps,l = ln� Sl
0Sl

� with S� = �1 + 
z��S �23�

where 0S� is the length of the �th layer at the previous time step.
Applying the constitutive equations, the stress update algorithm

and kinematics for the algorithm explained in the previous sec-
tion, the following resultant tangential force and the bending mo-
ment are obtained for a cross section:

T = �
�=1

N

���z�� · �z� · W where ���z�� =
��z�� + ��z�+1�

2

�24�

Fig. 3 Definition of N layers through the thickness
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M = �
�=1

N

���z�� · �z��z� · W where �z� =
z� + z�+1

2
�25�

where W is the width of the thin sheet. Note that the resultant
force and the bending moment are determined by the current ra-
dius of curvature and length of the centerline, R and S.

3.3 Solution Procedure for the Draw Bend Test. In the
simulation of the bending test shown in Fig. 1, the radius of cur-
vature for the centerline R is predetermined for each element con-
sidering the position of the element along the tool geometry �the
region along the sample where the element is located� in Fig. 1.
Therefore, the equilibrium condition for the bending moment is
not considered for the forming analysis, while the membrane
strain �or the length of the central line in each element S� is cal-
culated considering the force equilibrium or, equivalently, by
equating the tensile force distribution prescribed along the sample
with the resultant force in Eq. �24�. The tensile force distribution
is determined in terms of material properties, cylindrical tool ge-
ometry and friction, as discussed here.

The deformed blank sheet during the draw bend test is divided
into four regions as shown in Fig. 1�b�. In region I where the sheet
is stretched by the prescribed restraining back force Fb, a constant
tensile force due to the explicitly prescribed back force is assumed
in this region. Note that there is no friction involved in the present
draw bend test.3 Therefore, the tensile force at region I is

TI = Fb �26�

As for the tensile force in region II, the force instantaneously
increases at the entrance of region II �at A in Fig. 1�b�� to over-
come the resistance associated with bending, which each material
element undergoes in addition to tension, when it enters this re-
gion. The instantaneous force increment at A can be derived by
equating the work rate required to pull the sheet over the tool
surface with the plastic work increase rate associated with addi-
tional bending, as similarly done in the previous works for the
draw bead model by Stoughton �38� and Marciniak and Duncan
�39�.

Consider a material element with length 0S under tension TI in
region I as shown in Fig. 4�a�. Now, the material is assumed to
take up a new central line length S and bending as soon as it enters
region II under the tension TI and the bending moment. Since R
and TI are prescribed, the new S is determined from Eq. �24� along
with the stress distribution after extension and bending �the bend-
ing moment can also be obtained from Eq. �25� but its value is not
needed�. Therefore, the plastic work increment rate associated
with the material deformation becomes

dW

dt
= ��	 	 �� · d��dV�

under tension TI and bending

− �	 	 �� · d��dV�
under tension TI

� · � v
0S
� �27�

where v is the velocity of material movement and S0 /v is the time
duration of the movement. The increment of the tensile force �T
is obtained by equating Eq. �27� with the work increment rate by
external forces applied on the strip as shown in Fig. 4�b�, �T ·v.
Therefore, �T is approximated as

�TI–II = ��	 	 �� · d��dz�
under tension TI and bending

− �	 	 �� · d��dz�
under tension TI

� · W �28�

When the Coulomb friction is considered between the cylindrical
tool and the material in region II, the tensile force in region II
becomes

TII = �TI + �TI–II� · exp�� · �� �29�

where � and � are the friction coefficient and the clockwise angle
along the cylindrical tool, respectively.

As for the tensile force in region III, the force instantaneously
increases at the entrance of region III �B in Fig. 1�b�� to overcome
the resistance associated with complete unbending of the material.
Therefore, as similarly done for �TI−II,

�TII–III = ��	 	 �� · d��dz�
under tension TII��=�/2�

− �	 	 �� · d��dz�
under tension TII��=�/2� and bending

� · W

�30�

and

TIII�=TIV� = TII�� =
�

2
� + �TII–III �31�

The tensile force instantaneously increases at the entrance of re-
gion III �at B in Fig. 1�b�� and the force remains constant for
regions III and IV.

Note that the tensile forces in the whole regions are numerically
predetermined before analysis considering material properties and
tool geometry. Equating Eq. �24� with the prescribed tensile force
distribution leads to simultaneous nonlinear equations for the
membrane strain distribution. Here, the bisection method was uti-
lized to find solutions iteratively in which solutions were achieved
within a small number of iterations for most cases.

3.4 Deformed Shape After Springback. Springback simula-
tion after forming is to find the curvature and length distributions
of central lines, which are solved from the following equilibrium
conditions after unloading:

T = M = 0 �32�

Once the curvature and the length of the central lines are obtained,
the deformed shape is calculated from the following geometrical
relationship. The coordinates of nodal points are expressed as

�xi = Si cos��
j=1

i


 jSj� and �yi = Si sin��
j=1

i


 jSj� �33�

where �xi and �yi are the increment of coordinates and Si denotes
the length of the centerline of the ith element.

3In the conventional U channel draw bend test, friction by the blank holder or the
draw bead should be considered, which makes the analysis a little more complicated.

Fig. 4 „a… An element in region I under the tension and in re-
gion II under tension and bending moment, „b… tensile force
increase at the entrance of region II
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4 Sensitivity Tests
Numerical sensitivity tests were performed for the draw bend

test to investigate the effect of process and material parameters on
springback. As for process parameters, the r / t ratio, back force
and friction have been studied. Regarding material parameters,
different hardening models have been compared with/without the
Bauschinger effect. The effect of the nonquadratic yield surface
shape, which represents crystal structures, on springback was also
investigated. Material aspects such as Young’s modulus, yield
strength, and thickness were omitted here as many studies have
been done on these �15,18�.

For this study, the constitutive parameters of the aluminum al-
loy AA6111-T4 obtained from the previous report �40� were con-
sidered as reference values. Figure 5 shows the uniaxial stress-
strain curve of the test material with the Voce fit. Sensitivity tests
on the material were carried out by varying a specific parameter,
while fixing other parameters. The reference values are as follows:
isotropic yield function �by setting all of the constants unity in
Barlat’s Yld2000-2d�, yield potential exponent is 8 to represent
the fcc crystal structure �therefore, the plane strain parameter � in
Eq. �6� is 1.1089�. Young’s modulus and Poisson ratio were
70 GPa and 0.33, respectively. As for the hardening rule, the iso-
tropic hardening law was utilized for all the simulations of process
effects, while kinematic hardening was also considered for the
simulations of material effects. The reference values for the pro-
cess parameters are Fb=0.2, r / t=3.5 and friction coefficient �
=0.05.

The sheet thickness was divided into 20 layers through the
thickness and 200 increments were used for the bending and un-
bending steps. Finer elements were used for region II and region
III. In this particular sensitivity test, the characteristic element
length for regions II and III is 1 mm, and is 3 mm for other
regions. The initial rectangular strip with 508 mm�50 mm and
1.51 mm thickness was considered to be displaced 127 mm by the
lower grip.

4.1 Process Effects. Figures 6 and 7 show the variation of
predicted deformed geometry after springback and springback
angle with respect to the r / t ratio, respectively. The figures show
that the springback decreases �almost� linearly as the r / t ratio
increases. The moment-curvature curves of material points on the
sidewall region �region III� were calculated to examine detailed
material behavior. For the larger curvature �or less r / t ratio�, the
moment is unloaded from the larger �absolute� value when the
material is unloaded from bended or bended-unbended �straight-
ened� regions. Therefore, the magnitude of the curvature change
during unloading �the amount of springback� is proportional to the
magnitude of moment before unloading as shown in Fig. 8. The

variation of the overall shape is dominated by the sidewall curl in
region III which is much larger than that in region II in the draw
bend test.

Similar analysis was performed for various back forces in Figs.
9–11. The result shows that the magnitude of springback de-
creases as back force increases. The analysis of moment-curvature

Fig. 5 Stress-strain curve with the Voce fit for sensitivity tests

Fig. 6 Final shapes for the variation of radius of
tool-to-thickness

Fig. 7 Variation of the springback angle „��… with the radius of
tool-to-sheet thickness „r / t…

Fig. 8 Effect of the radius of tool-to-thickness „r / t… on
moment-curvature curves
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curves in Fig. 11 shows that the moment at the instance of un-
loading drops significantly as the back force increases. In Fig. 10,
the springback angle generally decreases linearly but it is notable
that approximately two linear regions exist. The change of slopes
occurs between the normalized forces 0.5 and 0.8. The front force
corresponding to TIII or TIV which is increased as the material
passes the cylindrical tool is calculated. As shown in Fig. 12, the
normalized tension at region III �or region IV� becomes greater

than unity when the back force falls between 0.6 and 0.8. There-
fore, the sudden change of slope might be caused by the transition
from the partially plastic to fully plastic response through the
thickness of the material element. This sudden change of spring-
back when the material passes over the elastic region was also
discussed by comparing measurements and FE analysis predic-
tions for aluminum alloy 6022-T4 �15�. It was observed that the
secondary curvature appeared for the large back force, called the
anticlastic curvature, which persists throughout unloading, thus
presenting a greater effective cross-sectional moment of inertia
resisting the principal springback. The current simple plane strain
analysis cannot show the anticlastic secondary curvature although
it shows the change of slope.

Figures 13–15 show the predicted dependence of the spring-
back angle with friction. As friction increases, springback de-
creases since tangential force increases in regions III and IV when
the material passes through the cylindrical tool, but friction has a
smaller effect than other process parameters.

4.2 Material Effects. The proper material model is important
for the accurate prediction of springback. In general, the con-
tinuum constitutive equation of plasticity consists of the boundary
of the elastic region �by the yield function� and its evolution �by
the hardening law�. Here, two main aspects of material description
were considered by investigating the effect of the hardening law
and the yield function shape.

For the hardening model, the nonlinear isotropic-kinematic
hardening model was considered to represent the common feature

Fig. 9 Final shapes for the variation of normalized back force
„Fb…

Fig. 10 Variation of the springback angle with the normalized
back force „Fb…

Fig. 11 Effect of normalized back force „Fb… on moment-
curvature curves

Fig. 12 Normalized back force versus normalized front force

Fig. 13 Final shapes for the variation of friction coefficient

1270 / Vol. 74, NOVEMBER 2007 Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.42. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



of stress-strain response for loading, unloading, and reverse load-
ing. For the reference hardening curve, which is usually the
uniaxial tensile curve, two parts can be defined,

�̄ = �̄iso + �̄kine = ��̄0 + q�1 − exp�− b�̄���

+ �1 − �q�1 − exp�− b�̄�� �34�

where q and b are material parameters. Constant  determines the
ratio between the size change and translation of the yield surface.
For =1, the yield surface only expands without translation, while
it translates without size change for =0.

For the evolution of back stress, the Armstrong-Frederic-type
nonlinear kinematic hardening rule �36� becomes, for the uniaxial
tensile case,

d� = C1d�p − C2�d�p �35�
Integrating Eq. �35� and comparing it with the kinematic part of
hardening in Eq. �34� gives

C2 = b and C1 = �1 − �qC2 �36�
Figures 16–18 show deformed shapes and springback angles

for different hardening parameters  for low back force �Fb

=0.2� and high back force �Fb=0.8�, respectively. In general,
larger springback is predicted when the material approaches pure
isotropic, =1. However, when the large back force is applied, the
difference becomes insignificant as shown in Fig. 16�b�. Note that
the springback of pure kinematic hardening for large back force is
similar to that of isotropic hardening. The moment-curvature
curves of a sidewall curl element are compared in Fig. 18, which

shows that the magnitude of moment at the end of the full un-
bending �up to zero curvature� after bending becomes lower as the
material approaches pure kinematic with more severe Bauschinger
effect. During the full unloading �at the zero curvature�, the ma-
terial behavior is generally elastic. However, for kinematic hard-
ening, full unloading may incur elastic-plastic deformation espe-
cially if the stress before unloading is large enough, while the
Bauschinger effect is severe. The magnified figure in Fig. 18�b�
shows that unloading curves are linear in most hardening cases
except for pure kinematic hardening, in which the elastic-plastic
transition induces larger springback.

The dependence of springback on the shape of yield surface has
been investigated. The yield surface can represent from the von
Mises yield surface �m=2� to the Tresca yield surface �m
=infinity� by varying the exponent value. In Fig. 19, three yield
surfaces with different exponents are schematically shown. It is
commonly recommended that exponent 6 for bcc and 8 for fcc
metals. Three exponent values 2, 6, and 8 were chosen to show the
effect of yield surface shape on the magnitude of springback. The
corresponding plane strain parameter � values are 1.1547, 1.1167,
and 1.1089, respectively. In Figs. 20–22 show that springback
increases as the exponent decreases. As the exponent decreases, �
increases in Eq. �6�, which leads to the increase of stress and
moment in the moment-curvature curve as shown in Fig. 22 for
the same uniaxial hardening behavior, therefore, inducing the in-
crease of springback.

Fig. 14 Variation of the springback angle with friction
coefficient

Fig. 15 Effect of friction on moment-curvature curves

Fig. 16 Final shapes for the variation of hardening laws: „a…
low back force, „b… high back force

Journal of Applied Mechanics NOVEMBER 2007, Vol. 74 / 1271

Downloaded 04 May 2010 to 171.66.16.42. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



5 Verification
In order to verify the prediction capability of the present semi-

analytic hybrid method, calculated springback results were com-
pared with experimental measurements. A dual-phase high
strength steel �DP-Steel� was selected as a sample material be-
cause significant springback is attainable compared to the mild
steel. The tensile curve of the DP-Steel in the rolling direction is
shown in Fig. 23 with its fit by the Voce equation. Isotropic elas-
ticity with Young’s modulus, 200 GPa and Poisson ratio, 0.3 were
used. For plastic hardening, combined isotropic-kinematic harden-
ing was applied along with the mixed hardening parameter 
=0.7 in Eq. �30�, which was obtained in the previous study �17� to
represent the Bauschinger effect. As for the anisotropic yield func-
tion, Yld2000-2d with the exponent 6 for the bcc crystal structure
was used and the anisotropic parameters were obtained from the
previous work �41�.

Two different sizes of the cylindrical tool �therefore, two dif-
ferent r / t ratios� with various normalized back forces were con-
sidered. For all cases, friction was controlled by applying the stan-
dard industrial lubricant MP404 to cylindrical tools for
measurement. For simulations, the friction coefficient was as-
sumed to be �=0.1 based on the previous work with the same
lubricant and sheet material �18� and negligible effect of friction
from the sensitivity tests in the previous section. The same sheet
strips and draw distance were used as done in the previous sec-
tion.

Figure 24 shows the calculated and measured deformed shapes
of sheet strips after springback with various back forces in the
case of r / t=11.28. The measured springback shows that the mag-
nitude decreases as the back force increases, which is consistent

with the result of the sensitivity test. In the figure, the combined
isotropic-kinematic hardening predicts the springback for Fb
=0.2–0.8 although some deviations are observed for Fb
=1.1–1.3. Figure 25 shows deformed shapes after springback for
smaller die radius, r / t=4.8. For the two different r / t ratios, good
prediction capability is shown especially in the range of low con-

Fig. 17 Variation of the springback angle with hardening laws:
„a… low back force, „b… high back force

Fig. 18 Effect of hardening laws on moment-curvature curves:
„a… low back force, „b… high back force

Fig. 19 Schematic shape of the Yld2000-2d surface with three
different exponents
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straint forces as shown in Figs. 24 and 25. The sudden reduction
in measured springback angle is observed for Fb=0.8–1.1, while
simulated springback angles change almost linearly in the whole
test region as shown in Figs. 26 and 27.

Wang et al. �42� and Li et al. �14� analyzed the sudden decrease
of the springback angle under the particular condition by introduc-

ing the concept of persistent anticlastic curvature �or secondary
curvature�. According to their observation in the present draw
bend test, anticlastic curvature is developed in the unbending pro-
cess during forming and it persists after springback when the ap-
plied sheet tension exceeds a critical value near yielding. They
concluded that for the current draw bend test the springback pro-
cess is closer to plane stress rather than plane strain because of the
persistent anticlastic curvature, which cannot be accounted for by
the current plane strain analysis. The secondary curvatures can be
reproduced by adopting higher order finite element analysis utiliz-
ing 3D continuum or shell elements �14�.

The comparisons of calculated predictions with experimental
measurements show that the developed numerical method can be
used as an effective tool to predict the springback with reasonable
accuracy even if fine resolution of material properties and process,
which might be achieved by more costly numerical methods such
as FEM, may not be attainable. Also, high numerical efficiency
can be achieved. For example, the CPU time of standard Pentium
2.8 GHz processor with the current hybrid method is approxi-
mately 65 s, while over 480 s with commercial finite element pro-
gram ABAQUS/Standard under similar conditions.

Fig. 20 Final shapes for the variation of the yield surface
exponent

Fig. 21 Variation of the springback angle with the yield sur-
face exponent

Fig. 22 Effect of yield surface exponent on moment-curvature
curves

Fig. 23 Measured stress-strain curve and the Voce fit of
DP-Steel

Fig. 24 Comparison between predicted and measured de-
formed shapes after springback with various normalized back
forces for r / t=11.28
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6 Summary
In the present paper, a semianalytic hybrid method has been

derived for the simulation of springback in a draw bend test under
the plane strain condition. The current simple approach is a fast
solution-generating method, which is numerically effective in
considering various important processes and material parameters.
Sensitivity tests for the effects of process and material parameters
on springback were investigated using this simple method. Re-
garding the effect of process parameters, springback decreases as
the r / t ratio, constraining back force and friction between sheets
and tools increase. As for the effect of material properties, spring-
back increases as the Bauschinger effect decreases from pure iso-
tropic hardening to pure kinematic hardening However, the
elastic-plastic unloading may increase the springback at the side-
wall region for pure kinematic hardening especially when restrain-
ing back force becomes large. For the yield surface shape, spring-
back increases as the sharpness of yield surface corners decreases.
The prediction capability of the developed numerical scheme was
verified by comparing the deformed shapes of a dual-phase steel

sheet after springback. The results showed reasonably good agree-
ments with measured results although small deviation existed for
large back force.
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Current methodologies used for the inference of thin film stress through system curvature
measurements are strictly restricted to stress and curvature states which are assumed to
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depend nonlocally on system curvatures (i.e., depend on the full-field curvatures). These
methods, however, all assume uniform substrate thickness, which is sometimes violated in
the thin film/substrate system. Using the perturbation analysis, we extend the methods to
nonuniform substrate thickness for the thin film/substrate system subject to nonuniform
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1 Introduction
Stoney �1� used a plate system composed of a stress bearing

thin film, of uniform thickness hf, deposited on a relatively thick
substrate, of uniform thickness hs, and derived a simple relation
between the curvature, �, of the system and the stress, ��f�, of the
film as follows:

��f� =
Eshs

2�

6hf�1 − �s�
�1�

In the above the subscripts f and s denote the thin film and sub-
strate, respectively, and E and � are the Young’s modulus and
Poisson’s ratio, respectively. Equation �1� is called the Stoney
formula, and it has been extensively used in the literature to infer
film stress changes from experimental measurement of system
curvature changes �2�.

Stoney’s formula involves the following assumptions:

�i� Both the film thickness hf and substrate thickness hs are
uniform, the film and substrate have the same radius R,
and hf �hs�R;

�ii� The strains and rotations of the plate system are infinitesi-
mal;

�iii� Both the film and substrate are homogeneous, isotropic,
and linearly elastic;

�iv� The film stress states are in-plane isotropic or equibiaxial
�two equal stress components in any two, mutually or-
thogonal in-plane directions� while the out-of-plane direct
stress and all shear stresses vanish;

�v� The system’s curvature components are equibiaxial �two
equal direct curvatures� while the twist curvature vanishes
in all directions; and

�vi� All surviving stress and curvature components are spa-
tially constant over the plate system’s surface, a situation
which is often violated in practice.

Despite the explicitly stated assumptions, the Stoney formula is

often arbitrarily applied to cases of practical interest where these
assumptions are violated. This is typically done by applying
Stoney’s formula pointwise and thus extracting a local value of
stress from a local measurement of the system curvature. This
approach of inferring film stress clearly violates the uniformity
assumptions of the analysis and, as such, its accuracy as an ap-
proximation is expected to deteriorate as the levels of curvature
nonuniformity become more severe.

Following the initial formulation by Stoney, a number of exten-
sions have been derived to relax some assumptions. Such exten-
sions of the initial formulation include relaxation of the assump-
tion of equibiaxiality as well as the assumption of small
deformations/deflections. A biaxial form of Stoney formula �with
different direct stress values and nonzero in-plane shear stress�
was derived by relaxing the assumption �v� of curvature equibi-
axiality �2�. Related analyses treating discontinuous films in the
form of bare periodic lines �3� or composite films with periodic
line structures �e.g., bare or encapsulated periodic lines� have also
been derived �4–6�. These latter analyses have removed assump-
tions �iv� and �v� of equibiaxiality and have allowed the existence
of three independent curvature and stress components in the form
of two, nonequal, direct components and one shear or twist com-
ponent. However, the uniformity assumption �vi� of all of these
quantities over the entire plate system was retained. In addition to
the above, single, multiple and graded films and substrates have
been treated in various “large” deformation analyses �7–10�.
These analyses have removed both the restrictions of an equibi-
axial curvature state as well as the assumption �ii� of infinitesimal
deformations. They have allowed for the prediction of kinemati-
cally nonlinear behavior and bifurcations in curvature states that
have also been observed experimentally �11,12�. These bifurca-
tions are transformations from an initially equibiaxial to a subse-
quently biaxial curvature state that may be induced by an increase
in film stress beyond a critical level. This critical level is inti-
mately related to the systems aspect ratio, i.e., the ratio of in-plane
to thickness dimension and the elastic stiffness. These analyses
also retain the assumption �vi� of spatial curvature and stress uni-
formity across the system. However, they allow for deformations
to evolve from an initially spherical shape to an energetically
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favored shape �e.g., ellipsoidal, cylindrical or saddle shapes� that
features three different, still spatially constant, curvature compo-
nents �11,12�.

The above-discussed extensions of Stoney’s methodology have
not relaxed the most restrictive of Stoney’s original assumption
�vi� of spatial uniformity which does not allow either film stress
and curvature components to vary across the plate surface. This
crucial assumption is often violated in practice since film stresses
and the associated system curvatures are nonuniformly distributed
over the plate area. Recently Huang et al. �13� and Huang and
Rosakis �14� relaxed the assumption �vi� �and also �iv� and �v�� to
study the thin film/substrate system subject to non-uniform, axi-
symmetric misfit strain �in thin film� and temperature change �in
both thin film and substrate�, respectively, while Ngo et al. �15�
studied the thin film/substrate system subject to arbitrarily nonuni-
form �e.g., nonaxisymmetric� misfit strain and temperature. The
most important result is that the film stresses depend nonlocally on
the substrate curvatures, i.e., they depend on curvatures of the
entire substrate. The relations between film stresses and substrate
curvatures are established for arbitrarily nonuniform misfit strain
and temperature change, and such relations degenerate to Stoney’s
formula for uniform, equibiaxial stresses and curvatures.

Feng et al. �16� relaxed part of the assumption �i� to study the
thin film and substrate of different radii, i.e., the thin film has a
smaller radius than the substrate. Ngo et al. �15� further relaxed
the assumption �i� for arbitrarily nonuniform thickness of the thin
film. The main purpose of the present paper is to relax the remain-
ing portion in assumption �i�, i.e., the uniform thickness of the
substrate. To do so we consider the case of thin film/substrate
system with nonuniform substrate thickness subject to nonuniform
misfit strain field in the thin film. Our goal is to relate film stresses
and system curvatures to the misfit strain distribution, and to ul-
timately derive a relation between the film stresses and the system
curvatures that would allow for the accurate experimental infer-
ence of film stress from full-field and real-time curvature mea-
surements.

2 Governing Equations and Boundary Conditions
Consider a thin film of uniform thickness hf which is deposited

on a circular substrate of thickness hs and radius R �Fig. 1�. The
substrate thickness is nonuniform, but is assumed to be axisym-
metric hs=hs�r� for simplicity, where r and � are the polar coor-
dinates. The film is very thin, hf �hs, such that it is modeled as a
membrane, and is subject to nonuniform misfit strain �m. Here the
misfit strain is also assumed to be axisymmetric �m=�m�r� for

simplicity. The substrate is modeled as a plate since hs�R. The
Young’s modulus and Poisson’s ratio of the film and substrate are
denoted by Ef, � f, Es, and �s, respectively.

Let uf and us denote the displacements in the radial direction in
the thin film and substrate, respectively. The in-plane membrane
strains are obtained from ���= �u�,�+u�,�� /2 for infinitesimal de-
formation and rotation, where � ,�=r,�. The linear elastic consti-
tutive model, together with the vanishing out-of-plane stress �zz
=0, give the in-plane stresses as

��� =
E

1 − �2 ��1 − ����� + ������� − �1 + ���m���� ,

where E ,�=Ef,� f in the thin film and Es,�s in the substrate, and
the misfit strain �m is only in the thin film. The nonvanishing axial
forces in the thin film and substrate are

Nr =
Eh

1 − �2�dur

dr
+ �

ur

r
− �1 + ���m�

�2�

N� =
Eh

1 − �2��
dur

dr
+

ur

r
− �1 + ���m�

where h=hf in the thin film and hs�r� in the substrate, and once
again the misfit strain �m is only in the thin film.

Let w denote the lateral displacement in the normal �z� direc-
tion. The curvatures are given by ���=w,��. The bending mo-
ments in the substrates are

Mr =
Eshs

3

12�1 − �s
2�
�d2w

dr2 + �s

1

r

dw

dr
�

�3�

M� =
Eshs

3

12�1 − �s
2�
��s

d2w

dr2 +
1

r

dw

dr
�

For nonuniform misfit strain distribution �m=�m�r�, the shear
stress along the radial direction at the film/substrate interface does
not vanish, and is denoted by 	. The in-plane force equilibrium
equations for the thin film and substrate, accounting for the effect
of interface shear stress 	, becomes

dNr

dr
+

Nr − N�

r

 	 = 0 �4�

where the minus sign in front of the interface shear stress is for
the thin film, and the plus sign is for the substrate. The moment
and out-of-plane force equilibrium equations for the substrate are

dMr

dr
+

Mr − M�

r
+ Q −

hs

2
	 = 0 �5�

dQ

dr
+

Q

r
= 0 �6�

where Q is the shear force normal to the neutral axis. Equation
�6�, together with the requirement of finite Q at r�0, gives Q�0.

The substitution of Eq. �2� into �4� yields the governing equa-
tions for u and 	,

d2uf

dr2 +
1

r

duf

dr
−

uf

r2 =
1 − � f

2

Efhf
	 + �1 + � f�

d�m

dr
�7�

d

dr
�hs�dus

dr
+

us

r
�� − �1 − �s�

dhs

dr

us

r
= −

1 − �s
2

Es
	 �8�

Equations �3�, �5�, and �6� give the governing equation for w and
	,

d

dr
�hs

3�d2w

dr2 +
1

r

dw

dr
�� − �1 − �s�

1

r

dhs
3

dr

dw

dr
=

6�1 − �s
2�

Es
hs	 �9�

Fig. 1 A schematic diagram of a thin film/substrate system
with the cylindrical coordinates „r ,� ,z…
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The continuity of displacements across the film/substrate inter-
face requires

uf = us −
hs

2

dw

dr
�10�

Equations �7�–�10� constitute four ordinary differential equations
�ODEs� for uf, us, w, and 	. The ODEs are linear, but have non-
constant coefficients.

The boundary conditions at the free edge r=R require that the
net forces and net moments vanish,

Nr
�f� + Nr

�s� = 0 �11�

Mr −
hs

2
Nr

�f� = 0 �12�

where the superscripts f and s denote the film and substrate, re-
spectively.

3 Perturbation Method for Small Variation of Sub-
strate Thickness

In the following we assume small variation of substrate thick-
ness

hs = hs0 + �hs = hs0 + �hs1 �13�

where hs0 ��constant� is the average substrate thickness, and
�hs�r� is the substrate thickness variation which satisfies
	�hs 	 �hs0; �hs�r� is also written as �hs1 in �13�, where 0
��1 is a small, positive constant, and hs1=hs1�r� is on the
same order as hs0.

We use the perturbation method to solve the ODEs analytically
for ��1. Two possible scenarios are considered separately in the
following:

�i� The substrate thickness variation �hs is on the same order
as the thin film thickness hf, i.e., �hs
hf. This is repre-
sented by �=hf /hs0 ��1�. For this case the film stresses
and system curvatures are identical to their counterparts
for a constant substrate thickness hs0. This is because the
Stoney formula �1�, as well as all its extensions, holds only
for thin films, hf �hs. As compared to unity �one�, terms
that are on the order of O�hf /hs� are always neglected. In
this case the difference between the film stresses �or sys-
tem curvatures, ¯� for nonuniform substrate thickness hs
and those for constant thickness hs0 is on the order of
O��hs /hs0� �as compared to unity�, which is the same as
O�hf /hs� since �hs
hf, and is therefore negligible.

�ii� The substrate thickness variation �hs is much larger than
the thin film thickness hf, i.e., 	�hs 	 �hf. This is repre-
sented by hf /hs0�� ��1�. In the following we focus on
this case and use the perturbation method �for ��1� to
obtain the analytical solution.

Elimination of 	 from �7� and �8� yields an equation for uf and
us. For hf /hs0�1, uf disappears in this equation, which becomes
the governing equation for us,

d

dr
�hs�dus

dr
+

us

r
�� − �1 − �s�

dhs

dr

us

r
=

Efhf

1 − � f

1 − �s
2

Es

d�m

dr
�14�

The above equation, together with �8�, gives the interface shear
stress

	 = −
Efhf

1 − � f

d�m

dr
�15�

This is a remarkable result that holds regardless of the substrate
thickness and boundary conditions at the edge r=R. Therefore, the
interface shear stress is proportional to the gradient of misfit
strain. For uniform misfit strain �m�r�=constant, the interface

shear stress vanishes �even for nonuniform substrate thickness�.
We use the perturbation method to write us as

us = us0 + �us1 �16�

where ��1, us0 is the solution for a constant substrate thickness
hs0, and is given by Huang et al. �13�

us0 =
Efhf

1 − � f

1 − �s
2

Eshs0
�1

r�0

r

��m���d� +
1 − �s

1 + �s

�m

2
r� �17�

and

�m =
2

�R2�
0

R

��md�

is the average misfit strain in the thin film; us1 in �16� is on the
same order as us0. In the following we use u� to denote du /dr.
The substitution of �16� and �17� into �14� and the neglect of
O��2� terms give the following linear ODE with constant coeffi-
cients for us1,

�us1� +
us1

r
��

= �1 − �s�
hs1�

hs0

us0

r
− �hs1

hs0
�us0� +

us0

r
���

�18�

Its general solution is

us1�r� = −
hs1

hs0
us0 +

1

2r�0

r

��1 + �s + �1 − �s�
r2

�2�hs1� ���
hs0

us0���d�

+
A

2
r �19�

where the constant A is to be determined. The total substrate dis-
placement is then given by

us�r� = �2 −
hs

hs0
�us0 +

1

2r�0

r

��1 + �s + �1 − �s�
r2

�2�
�

hs����
hs0

us0���d� +
�A

2
r �20�

The substitution of �15� into �9� yields the governing equation
for the displacement w�,

�hs
3�w� +

w�

r
���

− �1 − �s��hs
3��

w�

r
= −

6Efhf

1 − � f

1 − �s
2

Es
hs�m�

�21�

Its perturbation solution can be written as

w� = w0� + �w1� �22�

where w0� is the solution for a constant substrate thickness hs0, and
is given by Huang et al. �13�

w0� = − 6
Efhf

1 − � f

1 − �s
2

Eshs0
2 �1

r�0

r

��m���d� +
1 − �s

1 + �s

�m

2
r� �23�

and once again

�m =
2

�R2�
0

R

��md�

is the average misfit strain in the thin film; w1� in �22� is on the
same order as w0�. Equations �21�–�23� give the following linear
ODE with constant coefficients for w1�
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�w1� +
w1�

r
��

= −
6Efhf

1 − � f

1 − �s
2

Eshs0
2

hs1

hs0
�m� − 3�hs1

hs0
�w0� +

w0�

r
���

+ 3�1 − �s�
hs1�

hs0

w0�

r
�24�

Its general solution is

w1� = − 3
hs1

hs0
w0� +

3

2r�0

r

��1 + �s + �1 − �s�
r2

�2�hs1� ���
hs0

w0����d�

+
B

2
r + 3

Efhf

1 − � f

1 − �s
2

Eshs0
2

1

r�0

r
d

d�
��r2 − �2�

hs1���
hs0

��m���d�

�25�

where the constant B is to be determined. The complete solution
for w� is obtained from �22� as

w� = �4 − 3
hs

hs0
�w0� +

3

2r�0

r

��1 + �s + �1 − �s�
r2

�2�hs����
hs0

w0����d�

+
�B

2
r + 3

Efhf

1 − � f

1 − �s
2

Eshs0
2

1

r�0

r
d

d�
��r2 − �2��hs���

hs0
− 1�

��m���d� �26�

The displacement uf in the thin film is then obtained from us in
�20� and w� in �26� via �10�.

The constants A and B, or equivalently, �A and �B, are deter-
mined from the boundary conditions �11� and �12� as

�A = −
1 − �s

R2 �
0

R
R2 − �2

�

hs����
hs0

us0���d� �27�

�B = −
3�1 − �s�

R2 �
0

R
R2 − �2

�

hs����
hs0

w0����d� − 6
Efhf

1 − � f

1 − �s

Eshs0
2

1

R2

��
0

R
d

d�
���1 + �s�R2 + �1 − �s��2��hs���

hs0
− 1��m���d�

�28�

4 Thin-Film Stresses and System Curvatures
The system curvatures �rr=d2w /dr2 and ���= �1/r��dw /dr� are

obtained from �26�. Their sum ����rr+��� is given in terms of
the misfit strain by

�� = − 6
Efhf

1 − � f

1 − �s
2

Eshs0
2 ��3 − 2

hs

hs0
��m + �4 − 3

hs

hs0
+

3�1 − �s�
2

hs − hs�0�
hs0

�1 − �s

1 + �s
�m

+�
0

r �3�1 − �s�
�2 �

0

�

��m���d� − �m����hs����
hs0

d� � �29�

where

�m =
2

�R2�
0

R

��md�

is the average misfit strain in the thin film. The difference of system curvatures ����rr−��� is given by

�� = − 6
Efhf

1 − � f

1 − �s
2

Eshs0
2 �

�4 − 3
hs

hs0
���m −

2

r2�
0

r

��m���d��
+ � hs

hs0
− 1��m −

2

r2�
0

r

��hs���
hs0

− 1��m���d�

−
1

r2�
0

r

�2��m��� +
3�1 + �s�

�2 �
0

�

��m���d� +
3�1 − �s�

2
�m�hs����

hs0
d�
� �30�

The thin film stresses are obtained from the constitutive rela-
tions

�rr
�f� =

Ef

1 − � f
2�uf� + � f

uf

r
− �1 + � f��m�

and

���
�f� =

Ef

1 − � f
2�� fuf� +

uf

r
− �1 + � f��m�

where uf is given in �10�. The sum of thin film stresses, up to the
O��2� accuracy �as compared to unity�, is related to the misfit
strain by

�rr
�f� + ���

�f� =
Ef

1 − � f
�− 2�m� �31�

The difference of thin film stresses �rr
�f�−���

�f� is on the order of
O��Ef

2 /Es��m�hf /hs0��, which is very small as compared to �rr
�f�

+���
�f�. Therefore only its leading term is presented

�rr
�f� − ���

�f� = 4Ef
Efhf

1 − � f
2

1 − �s
2

Eshs0
��m −

2

r2�
0

r

��m���d�� �32�

4.1 Special Case: Uniform Misfit Strain. For uniform misfit
strain distribution �m=constant �and nonuniform substrate thick-
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ness�, the interface shear stress in �15� vanishes. The thin film
stresses become constant and equibiaxial, and are given by

�rr
�f� = ���

�f� =
Ef

1 − � f
�− �m� �33�

The curvatures in �29� and �30� become

�� = − 12
Efhf

1 − � f

1 − �s

Eshs0
2 �1 −

5 − �s

2
� hs

hs0
− 1�

+ �1 − 2�s�
hs − hs�0�

hs0
�m

�34�

�� = 18
Efhf

1 − � f

1 − �s
2

Eshs0
2 � hs

hs0
−

2

r2�
0

r

�
hs���
hs0

d��m

which are neither constant nor equibiaxial for varying substrate
thickness.

Figure 2 shows a substrate with a step change in thickness; a
uniform thickness h in the outer region �r�Rin� and a slightly
different value h−�h in the inner region �rRin�, where

	�h 	 �h. The average thickness becomes hs0=h−�h�Rin
2 �R2 �.

The curvature in the circumferential direction is

��� = − 6
Efhf

1 − � f

1 − �s

Esh
2 �m�1 +

�h

2h
�5 − �s − �1 − �s�

Rin
2

R2 � for r  Rin

1 +
�h

2h
�5 − �s − �1 − �s�

Rin
2

R2 − 3�1 + �s��1 −
Rin

2

r2 �� for r � Rin
� �35�

which is a constant in the inner region, and is continuous across r=Rin. The curvature in the radial direction �rr is the same constant as
��� in the inner region; however, it is discontinuous across r=Rin, and is given by

�rr = − 6
Efhf

1 − � f

1 − �s

Esh
2 �m�1 +

�h

2h
�5 − �s − �1 − �s�

Rin
2

R2 � for r  Rin

1 +
�h

2h
�5 − �s − �1 − �st�

Rin
2

R2 − 3�1 + �s��1 +
Rin

2

r2 �� for r � Rin
� �36�

The continuous ��� and discontinuous �rr are illustrated in Fig. 2. Similar discontinuity in �rr has been observed for varying thin film
thickness �17,18�.

It should be pointed out that the results in this section hold for discontinuous substrate thickness. This is because the film stresses in
�31� and �32� depend only on the misfit strain and are independent of substrate thickness. The system curvatures in �29� and �30� involve
the derivative of substrate thickness hs�, which is not well defined for a discontinuous hs. However, it appears only in the integration
such that �29� and �30� still hold.

In the following, we extend the Stoney formula for arbitrary nonuniform misfit strain distribution and nonuniform substrate thickness.

5 Extension of Stoney Formula for Nonuniform Misfit Strain Distribution and Nonuniform Substrate Thickness
In this section we extend the Stoney formula for arbitrary nonuniform misfit strain distribution and nonuniform substrate thickness by

establishing the direct relation between the thin-film stresses and substrate curvatures. We invert the misfit strain from �29� as

�m = −
1 − � f

6Efhf

Es

1 − �s
2�

hs
2�� −

1 − �s

2
hs

2��

+
1

2�
r

R

��1 − 3�s������ − 3�1 − �s�������hs
2���

hs����
hs0

d�

−
1 − �s

R2 �
0

R

�2������ − ������hs
2���

hs����
hs0

d�
� �37�

where

hs
2�� =

2

R2�
0

R

�hs
2��d�

is the average of hs
2��, and we have used �30� in establishing �37�.

Fig. 2 „a… A schematic diagram of a thin film/substrate system
with a step change in substrate thickness. „b… The normalized
system curvatures �̂rr=�rr /�0 and �̂��=��� /�0, where �0
=6„Efhf /1−�f… / „1−�s /Esh2

…�m, �h /2h=0.1, �s=0.27, and Rin
=R /3.
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The thin film stresses are obtained by substituting �37� into �31� and �32� as

�rr
�f� + ���

�f� =
Es

3�1 − �s
2�hf�

hs
2�� −

1 − �s

2
hs

2��

+
1

2�
r

R

��1 − 3�s������ − 3�1 − �s�������hs
2���

hs����
hs0

d�

−
1 − �s

R2 �
0

R

�2������ − ������hs
2���

hs����
hs0

d�
� �38�

�rr
�f� − ���

�f� = −
2Efhs0

3�1 + � f�
�� �39�

Equations �38� and �39� provide direct relations between film
stresses and system curvatures. The system curvatures in �38� al-
ways appear together with the square of substrate thickness, i.e.,
hs

2�� and hs
2��. It is important to note that stresses at a point in the

thin film depend not only on curvatures at the same point �local
dependence�, but also on curvatures in the entire substrate �non-
local dependence� via the term hs

2�� and the integrals in �38�. For
uniform substrate thickness, �38� and �39� degenerate to Huang
et al. �13�

The interface shear stress 	 can also be directly related to sys-
tem curvatures via �15� and �37�

	 =
Es

6�1 − �s
2�
� d

dr
�hs

2��� −
1

2
��1 − 3�s�hs

2�� − 3�1 − �s�hs
2���

hs�

hs0


�40�
Equation �40� provides a way to determine the interface shear
stresses from the gradients of system curvatures once the full-field
curvature information is available. Since the interfacial shear
stress is responsible for promoting system failures through
delamination of the thin film from the substrate, Eq. �40� has a
particular significance. It shows that such stress is related to the
gradient of �rr+���, as well as to the magnitude of �rr+��� and
�rr−��� for nonuniform substrate thickness.

In summary, �38�–�40� provide a simple way to determine the
thin film stresses and interface shear stress from the nonuniform
misfit strain in the thin film and nonuniform substrate thickness.
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Stress intensity factor calculations for crack-inclusion interaction
problems are presented. The problems considered include the
benchmark problems first discussed by Helsing and Jonsson
(2002, ASME J. Appl. Mech, 69, pp. 88–90), and subsequently by
Wang, Mogilevskaya, and Crouch (2003, ASME J. Appl. Mech.,
70, pp. 619–621). The numerical results are obtained using the
symmetric-Galerkin boundary element method in conjunction with
an improved quarter-point element for evaluating the stress inten-
sity factors by means of the displacement correlation technique.
The converged results confirm the accuracy of the previous simu-
lations and demonstrate that accurate solutions for these interac-
tion problems can be obtained with numerical methods that are
applicable in three dimensions. �DOI: 10.1115/1.2722773�

1 Introduction
The interaction between an arbitrary crack and a circular inclu-

sion is a subject of important interest, and thus has attracted a
great deal of contributions from various research groups. How-
ever, some numerical benchmark results on the subject have re-
cently been questioned by Helsing and Jonsson �HJ�; they showed
in Ref. �1� that their converged results for the stress intensity
factors �SIFs� KI and KII differ from values published in the lit-
erature. Following their challenge to the computational mechanics
community to confirm or disprove their findings, Wang, Mogi-
levskaya and Crouch �WMC� �2� have produced results obtained
using a Galerkin boundary integral �GBI� method and a complex

variables boundary element method �CVBEM�. The WMC solu-
tions agree with the HJ results, even though in one case it is not
clear precisely how well: for the problem of a circular arc crack
interacting with a circular inclusion �Fig. 1�b��, the HJ results
were only shown graphically.

Although the WMC work has substantially confirmed the HJ
results, we believe some further discussion is warranted. In our
opinion, it is important to verify, for eventual applications, that
these problems can also be accurately solved using “standard”
numerical techniques, i.e., techiques that are directly applicable in
three dimensions. Note that the integral equation elasticity formu-
lations in HJ and WMC rely on complex variable methods and are
therefore decidedly two-dimensional algorithms. Moreover, some
of the numerical approximations employed in their analyses, e.g.,
global function approximations rather than local element interpo-
lations, are not routinely used in three dimensions. This is not to
say that these are not good methods—quite the contrary, we think
these approaches are remarkably accurate—just not directly ex-
tendable to three dimensions. Thus, in addition to confirming the
HJ and WMC solutions, the purpose of this paper is to establish
that a general algorithm can successfully solve these types of
problems.

For the problem of a straight crack interacting with a circular
inclusion �Fig. 1�a��, the WMC calculations did not agree with �a
likely misprint in� the HJ result, and in this note we confirm the
WMC answer. In addition, by tabulating the results for the circular
crack problem shown in Fig. 1�b�, we can confirm the WMC
calculations.

2 Problem Descriptions and Method of Solution
We consider the two problems discussed in Ref. �1�, shown in

Figs. 1�a� and 1�b�. The straight crack problem �Fig. 1�a�� was
initially studied by Erdogan, Gupta and Ratwani �EGR� �3�, while
problem �Fig. 1�b�� involves a circular arc crack and was studied
by Cheeseman and Santare �4�. Plane strain is assumed. For both
problems, the shear moduli of the matrix and the inclusion are
respectively G1=1 and G2=23, and the corresponding Poisson’s
ratios are �1=0.35 and �2=0.3.

The calculations presented herein utilize a �more or less stan-
dard� quadratic element symmetric-Galerkin boundary integral
analysis �5�. However, the stress intensity factor computation is
based upon the modified quarter point �MQP� element �6�. The
basic idea of the MQP is to modify the quadratic shape functions
at the crack tip �adding an appropriate cubic term� in order that the
crack opening displacement satisfy a known constraint: the term
that is linear in distance to the tip must vanish �7�. This element
has been shown to yield highly accurate SIF values �even by
means of the simple displacement correlation technique� for stan-
dard crack problems, and this work establishes that this carries
over to the crack/inclusion problems considered herein. The MQP
approach of modifying the crack-tip shape functions extends di-
rectly to three dimensions; alternatively, the constraint on the tip
displacement can be incorporated directly by employing an appro-
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priate expansion, as in �8�. The highly accurate results obtained by
these authors would indicate that the MQP in 3D will also be very
successful.

3 Results and Discussions
For both problems, the straight/arc crack and the matrix-

inclusion interface are discretized into uniform elements. All the
results reported in this section are convergent with respect to mesh
refinement. For example, Fig. 2 shows the convergence of the
normalized SIFs FI and FII, defined as FI=KI / ����a� and FII

=KII / ����a�, for the straight crack problem �Fig. 1�a�� with
c /a=1.0. Here, the matrix-inclusion interface is meshed using ni
=68 elements. It can be seen that the solution for the SIFs at both
crack tips A and B converges quickly as the number of crack
elements nc approaches 10.

3.1 Straight Crack Interacting With Circular Inclusion.
Our symmetric-Galerkin boundary integral results using standard
�SQP� and modified quarter-point elements for the normalized
SIFs at crack tips A and B are presented in Tables 1 and 2, respec-
tively, together with the WMC, HJ, and EGR results. Here, it is
important to observe that the additional accuracy provided by the
MQP is essential in matching the results in HJ and WMC. Finally,
the significant differences in the numerical methods provide addi-
tional confirmation of the correctness of the SIF results.

As expected, only coarse meshes are needed to obtain the con-
verged solution when a crack tip is not very close to the inclusion
boundary. For example, in case c /a=8, nc=8 and ni=28 are re-
quired to reach the convergence. Overall, our MQP solutions
agree very well with HJ and WMC, and confirm WMC’s belief
that there is a misprint in the FII HJ result for the case c /a=3. Our
result �−0.003� is much closer to the WMC value �−0.004� than
the HJ �−0.035�.

To further demonstrate the accuracy and robustness of the nu-

Fig. 2 Convergence of F for c /a=1.0

Fig. 1 Crack-circular inclusion interaction under remote
stress: „a… Straight crack and „b… circular arc crack

Table 1 Normalized stress intensity factors at crack tip A „F=K / „���a……

c /a

FI
A FII

A

SQP MQP WMC HJ EGR SQP MQP WMC HJ EGR

0.3 0.202 0.234 0.236 0.235 0.225 0.089 0.073 0.074 0.073 0.072
0.5 0.338 0.348 0.347 0.347 0.341 0.113 0.102 0.102 0.102 0.101
1.0 0.616 0.614 0.613 0.613 0.613 0.068 0.061 0.061 0.061 0.057
1.5 0.761 0.756 0.755 0.755 0.763 0.015 0.012 0.012 0.012 −0.007
2.0 0.836 0.830 0.830 0.830 0.845 0.020 0.018 0.018 0.018 −0.021
3.0 0.944 0.937 0.936 0.936 0.953 0.068 0.067 0.067 0.067 −0.001
4.0 1.010 1.003 1.003 1.003 1.014 0.080 0.079 0.079 0.079 0.002
8.0 1.049 1.043 1.043 1.043 1.043 0.032 0.032 0.032 0.032 −0.026

Table 2 Normalized stress intensity factors at crack tip B „F=K / „���a……

c /a

FI
B FII

B

SQP MQP WMC HJ EGR SQP MQP WMC HJ EGR

0.3 0.803 0.790 0.790 0.790 0.784 −0.022 −0.022 −0.023 −0.023 −0.004
0.5 0.803 0.797 0.797 0.797 0.792 −0.037 −0.037 −0.037 −0.037 −0.006
1.0 0.823 0.817 0.817 0.817 0.817 −0.067 −0.067 −0.067 −0.067 −0.005
1.5 0.839 0.833 0.833 0.833 0.839 −0.074 −0.074 −0.074 −0.074 0.008
2.0 0.855 0.850 0.850 0.850 0.860 −0.058 −0.057 −0.058 −0.058 0.034
3.0 0.903 0.898 0.897 0.897 0.905 −0.004 −0.003 −0.004 −0.035 0.089
4.0 0.953 0.948 0.947 0.947 0.951 0.032 0.032 0.032 0.032 0.117
8.0 1.028 1.022 1.022 1.022 1.020 0.032 0.032 0.032 0.032 0.088
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merical techniques, the above calculation is modified so that the
inclusion and matrix are of the same material. In this case, there is
a known analytical result �9�: KI

A=KI
B=���a and KII

A =KII
B =0, and

the converged MQP numbers in Table 3 are virtually identical to
this solution. A minor numerical error for FI

A in case c /a=0.3 is
expected as this crack tip is very close to the inclusion boundary.

3.2 Circular Arc Crack Interacting With Circular
Inclusion. For this problem, the SIFs are respectively normalized
by the SIFs KIo and KIIo in the absence of the inclusion which are
given by �9�

�KIo

KIIo
� =

���Rc sin �

1 + �sin
�

2
	2
cos

�

2

sin
�

2
� �1�

Our converged results using the MQP element are listed along
with the WMC’s solution in Table 4 where a very good agreement
can be seen. As mentioned earlier, it is important to numerically
confirm the WMC results for this problem as the corresponding
HJ results are only available graphically.

4 Conclusions
It has been established that a standard Galerkin boundary inte-

gral algorithm, together with a modified quarter-point crack-tip
element, is capable of accurately solving the benchmark problems
discussed by Helsing and Jonsson �1�, and also by Wang et al. �2�.
The accuracy is confirmed not only through agreement with these

previous results but also by observed convergence with mesh re-
finement. This algorithm should therefore be equally successful
for three-dimensional applications.
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Rc

R
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MQP WMC MQP WMC MQP WMC MQP WMC MQP WMC MQP WMC
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1.2 0.944 0.944 1.353 1.353 0.962 0.962 1.284 1.285 1.009 1.009 1.281 1.281
1.5 0.961 0.961 1.202 1.202 0.990 0.990 1.159 1.159 1.056 1.056 1.160 1.160
2.0 0.972 0.972 1.103 1.104 0.992 0.992 1.092 1.092 1.059 1.059 1.083 1.084
3.0 0.986 0.986 1.039 1.040 0.992 0.992 1.042 1.043 1.039 1.039 1.036 1.037
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Table 3 Normalized stress intensity factors for the case where the inclusion is of the same
material as the matrix „analytical solution: FI=KI / „���a…=1 and FII=KII / „���a…=0…

c /a 0.3 0.5 1.0 1.5 2.0 3.0 4.0 8.0

FI
A 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000

FI
B 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

FII
A 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

FII
B 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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The method of analytic continuation and Schwarz-Neumann’s al-
ternating technique were applied to the thermoelastic interaction
problems of singularities and interfaces in an anisotropic “trima-
terial,” which denotes an infinite body composed of three dissimi-
lar materials bonded along two parallel interfaces. It was as-
sumed that the linear thermoelastic materials are under general
plane deformations in which the plane of deformation is perpen-
dicular to the planes of the two parallel interfaces. The author
then showed that by alternately applying the method of analytic
continuation across two parallel interfaces the solution for the
thermoelastic singularities in an anisotropic trimaterial can be
obtained in a series form from a solution for the same singulari-
ties in a homogeneous anisotropic medium.
�DOI: 10.1115/1.2722779�

1 Introduction
Thin-film and layered structures are technologically important

in electronics and optoelectronics. In these structures, defects
�such as dislocations� are inevitable and affect the performance of
systems �1�. From a mechanical point of view, dislocations are
treated as singularities, and analysis of an elastic field near a sin-
gularity is important for understanding the behavior of structures.
In addition to the intrinsic physical significance, the elastic field of
a dislocation can serve as a kernel function in singular integral
equations to simulate cracks. However, the elastic field near sin-
gularities is not easy to obtain because of the difficulty of satisfy-
ing the boundary conditions at free surfaces or interfaces or both.
Recently, Choi and Earmme �2� obtained a solution of an elastic
singularity in an anisotropic trimaterial by using the method of
analytic continuation �3� and Schwarz-Neumann’s alternating
technique �4�. In this study, by alternately applying the method of
analytic continuation across two parallel interfaces, the author
shows that the solution for thermoelastic singularities in an aniso-
tropic trimaterial can also be obtained in a series form from a
solution for the same singularities in a homogeneous anisotropic
medium. For conciseness, the notations in �2� are employed here
and the reader is referred to �2� for a more detailed explanation or
explicit forms.

2 Anisotropic Thermoelasticity
To briefly review anisotropic thermoelasticity, let us consider a

generalized two-dimensional heat conduction and deformation in
which temperature T and the displacement uj depend only on x1
and x2. The constitutive equation for a linear thermoelastic mate-
rial is

hi = − �ij
�T

�xj
, �ij = Cijkm

�uk

�xm
− �ijT, �i, j = 1,2,3� �1�

where hi is the heat flux, �ij is the coefficient of heat conduction,
and �ij is the stress-temperature coefficient. The conservation of
energy and equation of equilibrium are expressed, respectively, as
follows:

�ij
�2T

�xi�xj
= 0, Cijkm

�2uk

�xj�xm
− �ij

�T

�xj
= 0 �2�

A general solution for the temperature, corresponding heat flux,
displacement, and corresponding stress, which satisfy Eq. �2�,
may be written as follows �5–7�:

T = 2 Re����z��� �3�

hi = − 2 Re���i1 + ��i2����z��� �4�

ui = 2 Re�Aijf j�zj�
� + ci��z��� �5�

�1i = − 2 Re�Lij� j�
f j��zj�

� + di����z��� �6�

�2i = 2 Re�Lijf j��zj�
� + di���z��� �7�

In these equations, the function ��z�� is an analytic function of the
complex variable z�=x1+�x2, and � is the eigenvalue with a posi-
tive imaginary part of the equation �22�2+2�12�+�11=0. Column
vector c is the eigenvector of the following sextic equation:

�Ci1k1 + ��Ci1k2 + Ci2k1� + �2Ci2k2�ck = �i1 + ��i2 �8�

And column vector d is given by

di = �Ci2k1 + �Ci2k2�ck − �2i �9�

The dimensionless bimaterial constant �ab is defined as follows:

�ab �
�b − �a

�b + �a �10�

where �=��11�22−�12
2 and the indices a and b stand for materials

a and b, respectively. For mathematical simplicity, the two bima-
terial vectors are defined as follows:

eab � �La�−1�Ba + B̄b�−1�B̄b�db − da + �ab�d̄b − da�� + i�cb − ca

+ �ab�c̄b − ca��� �11�

gab � �L̄b�−1�Ba + B̄b�−1�− Ba�db − da + �ab�d̄b − da�� + i�cb − ca

+ �ab�c̄b − ca��� �12�
Of particular importance is the fact that the following factors
�namely, the derivative of temperature, the heat flux, the deriva-
tive of displacement, and the traction� must be continuous across
a perfectly bonded interface where x2=0,

�T

�x1
�x1� = ���x1� + �̄��x1� �13�

h2 = − i����x1� + i��̄��x1� �14�

�ui

�x1
�x1� = Aijf j��x1� + Āij f̄ j��x1� + ci���x1� + c̄i�̄��x1� �15�

�2i�x1� = Lijf j��x1� + L̄ij f̄ j��x1� + di���x1� + d̄i�̄��x1� �16�

3 Thermoelastic Singularity in an Anisotropic Bimate-
rial

Section 2 explained that a general solution of a generalized
two-dimensional heat conduction and deformation in anisotropic
thermoelasticity can be expressed by the analytic functions ��z�
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and f j�z�. Note also that while the function ��z�, which is respon-
sible for the thermal field, can be solved independently of the
elastic field, the function f j�z�, which is responsible for the elastic
field, depends on the thermal field, namely, ��z�. The elastic field
should therefore be calculated after the thermal field is known.
Once the solution �0�z� and f j

0�z� of a singularity in a homoge-
neous medium has been examined, the solution can then be used
as a building block for the same singularity in a bimaterial and a
trimaterial. The solution �0�z� for the temperature dislocation or
the heat source at �x1

0 ,x2
0� in an infinite homogeneous medium is

given as follows:

�0��z�� = 	 T0

4�i
−

Q0

4��

ln�z� − s�� �17�

where s�=x1
0+�x2

0, T0 is the magnitude of the temperature dislo-
cation, and Q0 is the intensity of the heat source �7�. The solution
f j
0�z� for the line force or the elastic dislocation at �x1

0 ,x2
0� in an

infinite homogeneous medium is given in Eq. �14� of Choi and
Earmme �2�.

Figure 1 of Choi and Earmme �2� shows anisotropic bimaterial
bonded along the x1 axis. In consideration of this type of aniso-
tropic bimaterial, the author used the method of analytic continu-
ation to construct a bimaterial solution for thermoelastic singulari-
ties in terms of a homogeneous solution for the same singularities.
First, a singularity located in the lower half-space is treated, in
which the elastic constants of material b are implied in �0�z� and
f j
0�z�. When the continuity conditions of the quantities given in

Eqs. �13�–�16� are applied and the analytic continuation argu-
ments are used, the solutions are expressed in terms of �0�z� and
f j
0�z� as follows:

��z�� = ��1 + �ab��0�z�
a�, in Sa

�0�z�
b� + �ab�̄0�z�

b�, in Sb
� �18�

f i�zi�� =�Uij
abf j

0�zi�
a� + ei

ab�0�zi�
a�, in Sa

fi
0�zi�

b� + V̄ij
ab f̄ j

0�zi�
b� + ḡi

ab�̄0�zi�
b�, in Sb

� �19�

When a similar procedure is used for a singularity located in the
upper half-space, the solution is easily found to be

��z�� = ��0�z�
a� + �ba�̄0�z�

a�, in Sa

�1 + �ba��0�z�
b�, in Sb

� �20�

f i�zi�� =� f i
0�zi�

a� + V̄ij
ba f̄ j

0�zi�
a� + ḡi

ba�̄0�zi�
a�, in Sa

Uij
baf j

0�zi�
b� + ei

ba�0�zi�
b�, in Sb

� �21�

where the material constants involved in �0�z� and f j
0�z� are for

material a.

4 Thermoelastic Singularity in an Anisotropic Trima-
terial

The alternating technique together with the results of Sec. 3 can
be used to analyze thermoelastic singularities in a trimaterial with
two parallel interfaces shown in Fig. 2 of Choi and Earmme �2�.
Because of the difficulty of simultaneously satisfying the continu-
ity conditions along the two interfaces, the method of analytic
continuation should be alternately applied to the two interfaces.
Consider a trimaterial with a singularity as shown in Fig. 2 of
Choi and Earmme �2�, where materials a, b, and c occupy regions
Sa :x2	h, Sb :h	x2	0, and Sc :x2
0, respectively, and the ma-
terials are perfectly bonded along the two parallel interfaces,
� :x2=0 and �* :x2=h. By alternately applying the method of ana-
lytic continuation across the two parallel interfaces, the solution
for thermoelastic singularities in an anisotropic trimaterial can
also be obtained in a series form as

��z��

=
�1 + �ab��

n=1

�

�n�z�
a − �ah + �bh�, in Sa

�
n=1

�

��n�z�
b� + �ab�̄n�z�

b − �bh + �̄bh��, in Sb

�0�z�
c� + �bc�̄0�z�

c� + �1 + �cb��ab�
n=1

�

�̄n�z�
c − �bh + �̄bh�, in Sc

�
�22�

f i�zi�� =�
n=1

�

�Uij
abf j

n�zi�
a − �i�

ah + � j�
bh� + ei

ab�n�zi�
a − �i�

ah + �bh��, in Sa

�
n=1

�

�f i
n�zi�

b� + V̄ij
ab f̄ j

n�zi�
b − �i�

bh + �̄ j�
bh� + ḡi

ab�̄n�zi�
b − �i�

bh + �̄bh��, in Sb

fi
0�zi�

c� + V̄ij
bc f̄ j

0�zi�
c� + ḡi

bc�̄0�zi�
c� + �

n=1

�

�Uij
cb�V̄jk

ab f̄k
n�zi�

c − � j�
bh + �̄k�

bh� + ḡj
ab�̄n�zi�

c − � j�
bh + �̄bh�� + ei

cb�ab�̄n�zi�
c − �bh + �̄bh��, in Sc

�
�23�

where the recurrence formula for �n�z� and f i
n�z� are

�n+1�z� = ��ab�cb�n�1 + �bc��0�z + �bhn − �̄bhn�, n = 0,1,2, . . . �24�

f i
n+1�z� =�Uij

bcf j
0�z� + ei

bc�0�z�, n = 0

V̄ij
cb�Vjk

abfk
n�z − �̄ j�

bh + �k�
bh� + gj

ab�n�z − �̄ j�
bh + �bh�� + ḡi

cb�ab�n�z − �̄bh + �bh�, n = 1,2,3, . . .
� �25�
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In Eqs. �24� and �25�, the thermoelastic constants of material c are
implied in �0�z� and f i

0�z�. Equations �22�–�25� give the complete
solution for the singularity located in region Sc.

It is worth noting that the purely thermal field expressed by ��z�
has analogy with anti-plane elastic deformation of anisotropic me-
dia. Thus, replacing Uij

ab, Vij
ab, f i�zi��, zi, and �i in Eqs. 26 and 27 of

Choi and Earmme �2� with �1+�ab�, �cb, ��z�, z�, and �, respec-
tively, directly gives Eqs. �22� and �24� in this paper, which veri-
fies the correctness of the thermal field presented in this paper.
The elastic field given by Eq. �23� together with Eqs. �24� and
�25� can be decomposed into two parts: the purely elastic field, the
same as Eqs. �26� and �27� of Choi and Earmme �2�, and the
thermoelastic field, expressed in terms of �n�z� �n=0,1 ,2 , . . . �.
By referring to Eqs. �19� and �21� in this paper and Eq. �24� of
Choi and Earmme �2�, one can easily check that Eqs. �23� and
�25� satisfy the displacement gradient and traction continuities
along two parallel interfaces, � and �*, which guarantees the ther-
moelastic field is correct.

The other case, for a singularity in region Sb, has the following
solution when the same procedure is used as in the case of a
singularity in region Sc,

��z�� =
�1 + �ab��

n=1

�

�n�z�
a − �ah + �bh�, in Sa

�
n=1

�

��n�z�
b� + �ab�̄n�z�

b − �bh + �̄bh��, in Sb

�1 + �cb���0�z�
c� + �ab�

n=1

�

�̄n�z�
c − �bh + �̄bh�� , in Sc

�
�26�

f i�zi�� =�
n=1

�

�Uij
abf j

n�zi�
a − �i�

ah + � j�
bh� + ei

ab�n�zi�
a − �i�

ah + �bh��, in Sa

�
n=1

�

�f i
n�zi�

b� + V̄ij
ab f̄ j

n�zi�
b − �i�

bh + �̄ j�
bh� + ḡi

ab�̄n�zi�
b − �i�

bh + �̄bh��, in Sb

Uij
cbf j

0�zi�
c� + ei

cb�0�zi�
c� + �

n=1

�

�Uij
cb�V̄jk

ab f̄k
n�zi�

c − � j�
bh + �̄k�

bh� + ḡj
ab�̄n�zi�

c − � j�
bh + �̄bh�� + ei

cb�ab�̄n�zi�
c − �bh + �̄bh��, in Sc

� �27�

where the recurrence formula for �n�z� and f i
n�z� are

�n+1�z� = ��ab�cb�n��0�z + �bhn − �̄bhn� + �cb�̄0�z + �bhn − �̄bhn��, n = 0,1,2, . . . �28�

f i
n+1�z� =� f i

0�z� + V̄ij
cb f̄ j

0�z� + ḡi
cb�̄0�z�, n = 0

V̄ij
cb�Vjk

abfk
n�z − �̄ j�

bh + �k�
bh� + gj

ab�n�z − �̄ j�
bh + �bh�� + ḡi

cb�ab�n�z − �̄bh + �bh�, n = 1,2,3, . . .
� �29�

In Eqs. �28� and �29�, the thermoelastic constants involved in
�0�z� and f i

0�z� are for material b.
The rate of convergence of the obtained solutions depends on

the bimaterial constants �ab and �cb and the bimaterial matrices
Tab and Tcb, which represent a mismatch of the thermoelastic
constants of the two constituent materials. Knowing that the ab-
solute value of �ab �or �cb� defined in Eq. �10� is less than or equal
to unity, and using the same argument as given in Sec. 6.1 of Choi
and Earmme �2�, one verifies that a sufficient condition for the
convergence of the series solutions is satisfied. The smaller the
difference in the thermoelastic constants of two adjacent materi-
als, a and b �or c and b�, the smaller the norm of �ab �or �cb� and
the norm of Tab �or Tcb�. The convergence rate consequently be-
comes more rapid. Furthermore, since the ordinates of the image
singularities are linearly proportional to thickness h of material b,
the thickness of the material b also affects the rate of convergence;
that is, as h gets larger, the series solution is more rapidly conver-
gent. Thus, the sum of the first three or four terms provides a good
approximation for most combinations of materials �2�. Even if
materials a or c or both are rigid or nonexistent, the solutions still
remain valid. These limiting cases are discussed by Choi and
Earmme �2�. For another limiting case in which two adjacent

materials, say materials a and b, are identical, the series solution
for a trimaterial reduces to a bimaterial solution.

5 Conclusion
Schwarz-Neumann’s alternating technique and the method of

analytic continuation were used to study the thermoelastic singu-
larity in an anisotropic trimaterial. The results show that a homo-
geneous solution for thermoelastic singularity serves as a base for
deriving a trimaterial solution for the same singularity in a series
form. The convergence rate of the series solution depends on the
material combinations and the thickness of the middle material.
The smaller the mismatch of thermoelastic constants of adjacent
materials, the more rapid the convergence rate is. As two adjacent
materials degenerate to become a homogeneous material, the tri-
material solution reduces to a bimaterial solution. The trimaterial
solution studied here can be applied to a variety of thermoelastic
problems for singularities as well as cracks �with continuous dis-
tribution of dislocations� in a bimaterial �including a half-plane
problem�, a finite thin film on semi-infinite substrate, a finite strip
of thin film, and so on. In fact, the merit of this trimaterial solution
is its wide applicability to bimaterial problems in addition to the
trimaterial problem per se.

Journal of Applied Mechanics NOVEMBER 2007, Vol. 74 / 1287

Downloaded 04 May 2010 to 171.66.16.42. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



References
�1� Tu, K. N., Mayer, J. W., and Feldman, L. C., 1992, Electronic Thin Film

Science for Electrical Engineers and Materials Scientists, Macmillan, New
York, pp. 157–189.

�2� Choi, S. T., and Earmme, Y. Y., 2002, “Elastic Study on Singularities Interact-
ing With Interfaces Using Alternating Technique: Part I. Anisotropic Trimate-
rial,” Int. J. Solids Struct., 39, pp. 943–957.

�3� Suo, Z., 1990, “Singularities, Interfaces and Cracks in Dissimilar Anisotropic

Media,” Proc. R. Soc. London, Ser. A, A427, pp. 331–358.
�4� Sokolnikoff, I. S., 1956, Mathematical Theory of Elasticity, McGraw-Hill,

New York, pp. 318–326.
�5� Eshelby, J. D., Read, W. T., and Shockley, W., 1953, “Anisotropic Elasticity

With Applications to Dislocation Theory,” Acta Metall., 1, pp. 251–259.
�6� Stroh, A. N., 1958, “Dislocations and Cracks in Anisotropic Elasticity,” Philos.

Mag., 3, pp. 625–646.
�7� Ting, T. C. T., 1996, Anisotropic Elasticity: Theory and Applications, Oxford

University Press, London, pp. 506–511.

1288 / Vol. 74, NOVEMBER 2007 Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.42. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm


	TECHNICAL PAPERS
	TECHNICAL BRIEFS

